Efficient electrochemical reduction of CO2 promoted by the electrospun Cu1.96S/Cu tandem catalyst

Nanoscale ◽  
2021 ◽  
Author(s):  
Shuo Liu ◽  
Yu Cao ◽  
Hai Liu ◽  
HuiLi Wang ◽  
Baoshan Zhang ◽  
...  

Coupled with renewable electricity, electrochemical reduction of CO2 (CO2RR) is one of the sustainable strategies for the production of value-added carbon-containing chemicals. Cu-based catalysts are by far the most widely...

2019 ◽  
Vol 43 (8) ◽  
pp. 3493-3499 ◽  
Author(s):  
Chaoneng Dai ◽  
Yue Qiu ◽  
Yu He ◽  
Qiang Zhang ◽  
Renlong Liu ◽  
...  

The electro-reduction of CO2 to produce energy sources has been considered as a visionary pathway with the help of renewable electricity, which can achieve carbon neutrality and mitigate global warming.


Author(s):  
Qi Hang Low ◽  
Boon Siang Yeo

Abstract Anthropogenic activities powered by the burning of fossil fuels have caused excessive emissions of carbon dioxide (CO2) to the atmosphere. This has a negative impact on our environment. One promising approach to reduce the concentration of atmospheric CO2 is to convert it to useful products. This could be achieved via the electrochemical reduction of CO2 using renewable electricity. Methanol (CH3OH), a valuable fuel and feedstock, is one of the CO2 electroreduction products. However, its formation, thus far, has been plagued by the inadequacy of functional electrocatalysts. In this review, we summarize progresses made in the development of methanol-selective electrocatalysts, which provides us with a basis to discuss the underlying challenges of electroreducing CO2 to methanol.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1671
Author(s):  
Piriya Pinthong ◽  
Phongsathon Klongklaew ◽  
Piyasan Praserthdam ◽  
Joongjai Panpranot

Zn/Cu electrocatalysts were synthesized by the electrodeposition method with various bath compositions and deposition times. X-ray diffraction results confirmed the presence of (101) and (002) lattice structures for all the deposited Zn nanoparticles. However, a bulky (hexagonal) structure with particle size in the range of 1–10 μm was obtained from a high-Zn-concentration bath, whereas a fern-like dendritic structure was produced using a low Zn concentration. A larger particle size of Zn dendrites could also be obtained when Cu2+ ions were added to the high-Zn-concentration bath. The catalysts were tested in the electrochemical reduction of CO2 (CO2RR) using an H-cell type reactor under ambient conditions. Despite the different sizes/shapes, the CO2RR products obtained on the nanostructured Zn catalysts depended largely on their morphologies. All the dendritic structures led to high CO production rates, while the bulky Zn structure produced formate as the major product, with limited amounts of gaseous CO and H2. The highest CO/H2 production rate ratio of 4.7 and a stable CO production rate of 3.55 μmol/min were obtained over the dendritic structure of the Zn/Cu–Na200 catalyst at −1.6 V vs. Ag/AgCl during 4 h CO2RR. The dissolution and re-deposition of Zn nanoparticles occurred but did not affect the activity and selectivity in the CO2RR of the electrodeposited Zn catalysts. The present results show the possibilities to enhance the activity and to control the selectivity of CO2RR products on nanostructured Zn catalysts.


Author(s):  
Eman A. Mohamed ◽  
Zaki Zahran ◽  
Yoshinori Naruta

Efficient and selective electrochemical reduction of CO2 is a promising approach for its conversion to high value-added chemicals and reducing its green-house effect. Unless a suitable catalyst, the reduction occurs...


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1884 ◽  
Author(s):  
Shiqiang (Rob) Hui ◽  
Nima Shaigan ◽  
Vladimir Neburchilov ◽  
Lei Zhang ◽  
Kourosh Malek ◽  
...  

Rising anthropogenic CO2 emissions and their climate warming effects have triggered a global response in research and development to reduce the emissions of this harmful greenhouse gas. The use of CO2 as a feedstock for the production of value-added fuels and chemicals is a promising pathway for development of renewable energy storage and reduction of carbon emissions. Electrochemical CO2 conversion offers a promising route for value-added products. Considerable challenges still remain, limiting this technology for industrial deployment. This work reviews the latest developments in experimental and modeling studies of three-dimensional cathodes towards high-performance electrochemical reduction of CO2. The fabrication–microstructure–performance relationships of electrodes are examined from the macro- to nanoscale. Furthermore, future challenges, perspectives and recommendations for high-performance cathodes are also presented.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1102
Author(s):  
Fengyang Ju ◽  
Jinjin Zhang ◽  
Weiwei Lu

The electrochemical reduction of CO2 is a promising way to recycle it to produce value-added chemicals and fuels. However, the requirement of high overpotential and the low solubility of CO2 in water severely limit their efficient conversion. To overcome these problems, in this work, a new type of electrolyte solution constituted by ionic liquids and propylene carbonate was used as the cathodic solution, to study the conversion of CO2 on an Ag electrode. The linear sweep voltammetry (LSV), Tafel characterization and electrochemical impedance spectroscopy (EIS) were used to study the catalytic effect and the mechanism of ionic liquids in electrochemical reduction of CO2. The LSV and Tafel characterization indicated that the chain length of 1-alkyl-3-methyl imidazolium cation had strong influences on the catalytic performance for CO2 conversion. The EIS analysis showed that the imidazolium cation that absorbed on the Ag electrode surface could stabilize the anion radical (CO2•−), leading to the enhanced efficiency of CO2 conversion. At last, the catalytic performance was also evaluated, and the results showed that Faradaic efficiency for CO as high as 98.5% and current density of 8.2 mA/cm2 could be achieved at −1.9 V (vs. Fc/Fc+).


2019 ◽  
Author(s):  
Sahithi Ananthaneni ◽  
Rees Rankin

<div>Electrochemical reduction of CO2 to useful chemical and fuels in an energy efficient way is currently an expensive and inefficient process. Recently, low-cost transition metal-carbides (TMCs) are proven to exhibit similar electronic structure similarities to Platinum-Group-Metal (PGM) catalysts and hence can be good substitutes for some important reduction reactions. In this work, we test graphenesupported WC (Tungsten Carbide) nanocluster as an electrocatalyst for the CO2 reduction reaction. Specifically, we perform DFT studies to understand various possible reaction mechanisms and determine the lowest thermodynamic energy landscape of CO2 reduction to various products such as CO, HCOOH, CH3OH, and CH4. This in-depth study of reaction energetics could lead to improvements and develop more efficient electrocatalysts for CO2 reduction.<br></div>


Sign in / Sign up

Export Citation Format

Share Document