scholarly journals Efficient Electrochemical Reduction of CO2 to CO in Ionic Liquid/Propylene Carbonate Electrolyte on Ag Electrode

Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1102
Author(s):  
Fengyang Ju ◽  
Jinjin Zhang ◽  
Weiwei Lu

The electrochemical reduction of CO2 is a promising way to recycle it to produce value-added chemicals and fuels. However, the requirement of high overpotential and the low solubility of CO2 in water severely limit their efficient conversion. To overcome these problems, in this work, a new type of electrolyte solution constituted by ionic liquids and propylene carbonate was used as the cathodic solution, to study the conversion of CO2 on an Ag electrode. The linear sweep voltammetry (LSV), Tafel characterization and electrochemical impedance spectroscopy (EIS) were used to study the catalytic effect and the mechanism of ionic liquids in electrochemical reduction of CO2. The LSV and Tafel characterization indicated that the chain length of 1-alkyl-3-methyl imidazolium cation had strong influences on the catalytic performance for CO2 conversion. The EIS analysis showed that the imidazolium cation that absorbed on the Ag electrode surface could stabilize the anion radical (CO2•−), leading to the enhanced efficiency of CO2 conversion. At last, the catalytic performance was also evaluated, and the results showed that Faradaic efficiency for CO as high as 98.5% and current density of 8.2 mA/cm2 could be achieved at −1.9 V (vs. Fc/Fc+).

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6962
Author(s):  
Sulafa Abdalmageed Saadaldeen Mohammed ◽  
Wan Zaireen Nisa Yahya ◽  
Mohamad Azmi Bustam ◽  
Md Golam Kibria

The electrochemical reduction of carbon dioxide (CO2ER) is amongst one the most promising technologies to reduce greenhouse gas emissions since carbon dioxide (CO2) can be converted to value-added products. Moreover, the possibility of using a renewable source of energy makes this process environmentally compelling. CO2ER in ionic liquids (ILs) has recently attracted attention due to its unique properties in reducing overpotential and raising faradaic efficiency. The current literature on CO2ER mainly reports on the effect of structures, physical and chemical interactions, acidity, and the electrode–electrolyte interface region on the reaction mechanism. However, in this work, new insights are presented for the CO2ER reaction mechanism that are based on the molecular interactions of the ILs and their physicochemical properties. This new insight will open possibilities for the utilization of new types of ionic liquids. Additionally, the roles of anions, cations, and the electrodes in the CO2ER reactions are also reviewed.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1142
Author(s):  
Chen Chi ◽  
Donghong Duan ◽  
Zhonglin Zhang ◽  
Guoqiang Wei ◽  
Yu Li ◽  
...  

The electrochemical reduction of CO2 to methanol is a promising strategy, which currently suffers from the poor catalytic activity, selectivity, and stability of the electrode. Here, we report a simple one-pot hydrothermal strategy to fabricate Mo–Bi BMC@CNT nanocomposites, in which Mo–Bi bimetallic chalcogenide nanoparticles were in-situ decorated on carbon nanotubes. The Mo–Bi BMC nanoparticles with an average particle size of 12 nm were uniformly supported on the surface of CNTs without aggregation into larger clusters. The Mo–Bi BMC@CNT nanocomposites exhibited a relatively good catalytic performance for the electrochemical reduction of CO2 to methanol in a 60 wt.% 1-ethyl-3-methylimidazolium tetrafluoroborate aqueous electrolyte. Among them, the Mo–Bi BMC@CNT-15% nanocomposite showed the highest Faradaic efficiency of 81% for methanol at −0.3 V vs. a saturated calomel reference electrode (SCE) and a stable current density is 5.6 mA cm−2 after a run time of 12 h. The excellent catalytic properties are likely attributed to its nanostructure and fast electron transfer. These derive from the synergistic effect of Mo–Bi and the high conductivity of CNTs. This work opens a way to provide an efficient catalytic system for the electroreduction of CO2 to methanol in industrial applications.


2021 ◽  
Vol 287 ◽  
pp. 02016
Author(s):  
Sulafa Abdalmageed Saadaldeen Mohammed ◽  
Wan Zaireen Nisa Yahya ◽  
Mohamad Azmi Bustam

Transforming carbon dioxide (CO2) into value-added products through electrochemical reduction reaction (CO2ERR) is a promising technique due to its potential advantages using renewable energy. The main challenge is to find a stable catalytic system that could minimize the reaction overpotential with high faradaic efficiency and high current density. Ionic liquids (ILs) as electrolyte in CO2ERR have attracted attention due to the advantages of their unique properties in enhancing catalytic efficiency. For better performance, a systematic understanding of the role of ILs as electrocatalyst is needed. Therefore, this paper aims to correlate the performance of ILs as co-catalyst in (CO2ERR) with the lowest unoccupied molecular orbital (LUMO) energy level and the interaction energy as predicted by quantum chemical calculation using Conductor like Screening Model for Real Solvents (COSMO-RS) and Turbomole. The results show strong linearity (R2=0.98) between hydrogen bond energy (HB) and LUMO values. It is demonstrated that as HB increases, the LUMO value decreases, and the catalytic activity for CO2ERR also increases. This result allows further understanding on the correlation between the molecular structure and the catalytic activity for CO2ERR. It can serve as a priori prediction to aid in the design of new effective catalysts.


Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 476 ◽  
Author(s):  
Qianwen Li ◽  
Mei Li ◽  
Shengbo Zhang ◽  
Xiao Liu ◽  
Xinli Zhu ◽  
...  

Copper-based bimetallic catalysts have been recently showing promising performance for the selective electrochemical reduction of CO2. In this work, we successfully fabricated the partially reduced oxides SnOx, CuOxmodified Cu foam electrode (A-Cu/SnO2) through an electrodeposition-annealing-electroreduction approach. Notably, in comparison with the control electrode (Cu/SnO2) without undergoing annealing step, A-Cu/SnO2 exhibits a significant enhancement in terms of CO2 reduction activity and CO selectivity. By investigating the effect of the amount of the electrodeposited SnO2, it is found that A-Cu/SnO2 electrodes present the characteristic Sn-Cu synergistic catalysis with a feature of dominant CO formation (CO faradaic efficiency, 70~75%), the least HCOOH formation (HCOOH faradaic efficiency, <5%) and the remarkable inhibition of hydrogen evolution reaction. In contrast, Cu/SnO2 electrodes exhibit a SnO2 coverage-dependent catalysis—a shift from CO selectivity to HCOOH selectivity with the increasing deposited SnO2 on Cu foam. The different catalytic performance between Cu/SnO2 and A-Cu/SnO2 might be attributed to the different content of Cu atoms in SnO2 layer, which may affect the density of Cu-Sn interface on the surface. Our work provides a facile annealing-electroreduction strategy to modify the surface composition for understanding the metal effect towards CO2 reduction activity and selectivity for bimetallic Cu-based electrocatalysts.


2017 ◽  
Vol 148 (1) ◽  
pp. 108-118 ◽  
Author(s):  
Michele O. Vieira ◽  
Wesley F. Monteiro ◽  
Bruna S. Neto ◽  
Rosane Ligabue ◽  
Vitaly V. Chaban ◽  
...  

Author(s):  
Siddhartha Subramanian ◽  
Joost Middelkoop ◽  
Thomas Burdyny

The production of value added C1 and C2 compounds within CO2 electrolyzers has reached sufficient catalytic performance that system and process performance – such as CO2 utilization – have come...


2018 ◽  
Vol 378 ◽  
pp. 555-561 ◽  
Author(s):  
Feng-xia Shen ◽  
Jin Shi ◽  
Tian-you Chen ◽  
Feng Shi ◽  
Qing-yuan Li ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (30) ◽  
pp. 17572-17581
Author(s):  
Nusrat Rashid ◽  
Mohsin Ahmad Bhat ◽  
U. K. Goutam ◽  
Pravin Popinand Ingole

Herein, we present fabrication of graphene oxide supported Cu/CuxO nano-electrodeposits which efficiently and selectively can electroreduce CO2 into ethylene with a faradaic efficiency of 34% and conversion rate of 194 mmol g−1 h−1 at −0.985 V vs. RHE.


2019 ◽  
Author(s):  
Emmanuel Abdul ◽  
Jason Pitts ◽  
Deepak Rajput ◽  
Shankar Rananavare

Gas sensors fabricated with antimony doped tin oxide (ATO) nanomaterials exhibit remarkable sensitivity for detecting oxidizing and reducing gases. This study highlights the enhanced selectivity and stability of the porous ATO nanomaterial electrode made for electrochemical reduction of CO2 in aqueous media. During electrochemical reduction, these electrodes prepared from compressed powders tend to crumble within a few hours in aqueous media. To overcome this electrode disintegration effect, we modified the surface of the doped tin-Oxide nanoparticles with Nafion and a dipodal silane (1,2-Bis(triethoxysilyl)ethane). The electrode characterization studies include Cyclic Voltammetry (CV), and Electrochemical Impedance Spectroscopy (EIS). Scanning electron microscopic investigation of electrode surface morphology and roughness before and after electrochemical CO2 reduction for derivatized and underivatized electrode revealed lower surface roughness for former than the latter.The derivatized electrodes allowed CO2 electrochemical reduction at low overpotentials and high current density without any electrode crumbling over more than 24 hours of continuous operation. Formate/formic acid and methanol were the major products of reduction at electrode potentials ranging from -0.4 to -1.0V vs. RHE in the CO2 saturated 0.1M KHCO3 electrolyte. Higher current density and Faradaic Efficiency of formic acid was observed when compared to planar tin electrode materials and tin oxide nanoparticles deposited on FTO glass.


Sign in / Sign up

Export Citation Format

Share Document