The ligand effect for atomically precise gold nanoclusters in tailoring catalytic properties

Nanoscale ◽  
2021 ◽  
Author(s):  
Shuohao Li ◽  
Wenjiang Tian ◽  
Yuanyuan Liu

It is well known that the surface ligands are vital layers for ligand-protected Aun nanoclusters. Improving the knowledge of the relationship between ligands and catalytic properties is a forefront research...

CrystEngComm ◽  
2014 ◽  
Vol 16 (21) ◽  
pp. 4406-4413 ◽  
Author(s):  
Xiang-Zi Li ◽  
Kong-Lin Wu ◽  
Yin Ye ◽  
Xian-Wen Wei

Ni nanotube (nanorod) arrays are controllably fabricated by a one-step approach, the GDDATG and DDCG growth mechanisms are introduced. The Ni nanostructures present higher catalytic activities for dye degradation, the relationship between structures and catalytic properties is also studied.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 142
Author(s):  
Bartłomiej Rogalewicz ◽  
Tomasz Maniecki ◽  
Radosław Ciesielski ◽  
Agnieszka Czylkowska

In one of our previously published articles, we reported the synthesis, spectroscopic, thermal, and catalytic properties of four new M(II) acetate (where M = Co, Ni, Cu, Zn) complexes with imidazole. Presented compounds exhibited activity in the reaction on catalytic oxidation of styrene. In this study we have synthesized and investigated properties of analogous compounds, however using formates or propionates of mentioned metal cations instead of acetates. Such an approach allowed us to draw valuable conclusions concerning the relationship between the carbon chain length and catalytic activity, which is an important factor for catalyst modeling. Synthesized compounds have been thoroughly investigated using appropriate analytic techniques: AAS (Atomic Absorption Spectrometry), FTIR (Fourier-Transform Infrared Spectroscopy), and TGA (Thermogravimetric Analysis). Catalytic properties have been studied under the same previous conditions, using GC-FID (GC-chromatograph equipped with FID detector).


Author(s):  
Katarzyna Adamska ◽  
Szymon Smykała ◽  
Sebastian Zieliński ◽  
Damian Szymański ◽  
Agnieszka Hojeńska ◽  
...  

AbstractThe oxidation of soot over RuRe bimetallic nanoparticles (NPs) supported on γ-Al2O3 has been investigated. The catalysts were synthesized by a microwave-polyol method and characterized by ICP, BET, TEM, STEM-EDS, XRD and XPS techniques. The study revealed that the proper choice of the Re loading (0.4–2.0 wt%) is crucial for the catalytic behavior of the 2% Ru–Re/Al2O3 nano-catalysts.The best catalytic properties, in terms of overall activity and stability, were observed for the 2%Ru-0.8%Re/γ-Al2O3 nano-catalyst. The stability of all bimetallic 2% Ru–Re nano-catalysts in catalytic soot oxidation in the presence of oxygen is very high in contrast to the 2% Ru/γ-Al2O3 sample. The presence of rhenium in the catalytic system hinder the formation of large RuO2 agglomerates leading to a better dispersion of active ruthenium phase and a better catalytic performance. The relationship between the catalytic activity of Ru–Re/γ-Al2O3 and the synergetic roles of Ru and Re is discussed.


2019 ◽  
Vol 20 (12) ◽  
pp. 2924 ◽  
Author(s):  
Sibidou Yougbare ◽  
Ting-Kuang Chang ◽  
Shih-Hua Tan ◽  
Jui-Chi Kuo ◽  
Po-Hsuan Hsu ◽  
...  

Bacterial infections have caused serious threats to public health due to the antimicrobial resistance in bacteria. Recently, gold nanoclusters (AuNCs) have been extensively investigated for biomedical applications because of their superior structural and optical properties. Great efforts have demonstrated that AuNCs conjugated with various surface ligands are promising antimicrobial agents owing to their high biocompatibility, polyvalent effect, easy modification and photothermal stability. In this review, we have highlighted the recent achievements for the utilizations of AuNCs as the antimicrobial agents. We have classified the antimicrobial AuNCs by their surface ligands including small molecules (<900 Daltons) and macromolecules (>900 Daltons). Moreover, the antimicrobial activities and mechanisms of AuNCs have been introduced into two main categories of small molecules and macromolecules, respectively. In accordance with the advancements of antimicrobial AuNCs, we further provided conclusions of current challenges and recommendations of future perspectives of antimicrobial AuNCs for fundamental researches and clinical applications.


Sign in / Sign up

Export Citation Format

Share Document