Dipole Moment and Pressure Dependent Interlayer Excitons in MoSSe/WSSe Heterostructures

Nanoscale ◽  
2022 ◽  
Author(s):  
Rongtian Pang ◽  
Shudong Wang

The broken mirror symmetry of the two-dimensional (2D) Janus material brings novel quantum properties and various application prospects. Particularly, when stacking into heterostructure, its intrinsic dipole moments and large band...

1993 ◽  
Vol 58 (12) ◽  
pp. 2813-2830 ◽  
Author(s):  
Andrzej J. Sadlej ◽  
Ota Bludský ◽  
Vladimír Špirko

A total of 330 points on the potential energy and electric dipole moment surfaces of the ground electronic state of the H2O . HF complex have been calculated ab initio using the SCF method and many-body perturbation theory (MBPT). To keep the calculations manageable, the geometry parameters of H2O were fixed at their experimental values and only certain two dimensional sections of the total surfaces have been evaluated. for each of the two-dimensional surface section, analytic potential energy and electric dipole moment functions have been fitted through the points and corresponding vibrational energy levels and effective electric dipole moments have been calculated using approximate vibrational Hamiltonians. The calculated values of resulting vibrational energies and effective electric dipoles from differently wide intervals for different vibrational modes. The intervals corresponding to the most interesting low frequency modes (out-of-plane and H2O vs HF stretching) are very narrow and coincide satisfactory with the corresponding experimental values. A very reasonable agreement has also been obtained for the equilibrium geometry, electric dipole moment and dissociation energy De of the complex. These findings lead us to believe that the calculated potential energy and electric dipole moment surfaces are sufficiently accurate for predicting purposes and rationalization of the so far unassigned spectral data of H2O . HF.


2008 ◽  
Vol 73 (6-7) ◽  
pp. 873-897 ◽  
Author(s):  
Vladimír Špirko ◽  
Ota Bludský ◽  
Wolfgang P. Kraemer

The adiabatic three-dimensional potential energy surface and the corresponding dipole moment surface describing the ground electronic state of HN2+ (Χ1Σ+) are calculated at different levels of ab initio theory. The calculations cover the entire bound part of the potential up to its lowest dissociation channel including the isomerization barrier. Energies of all bound vibrational and low-lying ro-vibrational levels are determined in a fully variational procedure using the Suttcliffe-Tennyson Hamiltonian for triatomic molecules. They are in close agreement with the available experimental numbers. From the dipole moment function effective dipoles and transition moments are obtained for all the calculated vibrational and ro-vibrational states. Statistical tools such as the density of states or the nearest-neighbor level spacing distribution (NNSD) are applied to describe and analyse general patterns and characteristics of the energy and dipole results calculated for the massively large number of states of the strongly bound HN2+ ion and its deuterated isotopomer.


2013 ◽  
Vol 28 (29) ◽  
pp. 1350147 ◽  
Author(s):  
TAKESHI FUKUYAMA ◽  
ALEXANDER J. SILENKO

General classical equation of spin motion is explicitly derived for a particle with magnetic and electric dipole moments in electromagnetic fields. Equation describing the spin motion relative to the momentum direction in storage rings is also obtained.


1987 ◽  
Vol 105 ◽  
Author(s):  
Hisham Z. Massoud

AbstractThe magnitude of the dipole moment at the Si-SiO2 interface resulting from partial charge transfer that takes place upon the formation of interface bonds has been calculated. The charge transfer occurs because of the difference in electronegativity between silicon atoms and SiO2 molecules which are present across the interface. Results obtained for (100) and (111) silicon substrates indicate that the magnitude of the interface dipole moment is dependent on substrate orientation and the interface chemistry. Dipole moments at the Si-SiO2 and gate-SiO2 interfaces should be included in the definition of the flatband voltage VFB of MOS structures. CV-based measurements of the metal-semiconductor workfunction difference φms on (100) and (111) silicon oxidized in dry oxygen and metallized with Al agree with the predictions of this model. Other types of interface dipoles and their processing dependence are briefly discussed.


2009 ◽  
Vol 74 (1) ◽  
pp. 131-146 ◽  
Author(s):  
Ladislav Drož ◽  
Mark A. Fox ◽  
Drahomír Hnyk ◽  
Paul J. Low ◽  
J. A. Hugh MacBride ◽  
...  

Dipole moments were measured for a series of substituted benzenes, biphenyls, terphenyls, C-monoaryl- and C,C′-diaryl-p-carboranes. For the donor–bridge–acceptor systems, Me2N–X–NO2, where X is 1,4-phenylene, biphenyl-4,4′-diyl, terphenyl and 1,4-C6H4-p-CB10H10C-1,4-C6H4, the measured interaction dipole moments are 1.36, 0.74, 0.51 and 0.00 D, respectively. The magnitude of the dipole moment reflects the ability of the bridge to transmit electronic effects between donor and acceptor groups. Thus, whilst the 1,4-phenylene bridges allow moderate electronic interactions between the remote groups, the p-carboranediyl unit is less efficient as a conduit for electronic effects. Averaged dipole moments computed at the DFT (B3LYP/6-31G*) level of theory from two distinct molecular conformers are in good agreement with the experimental values. Examination of the calculated electronic structures provides insight into the nature of the interactions between the donor and acceptor moieties through these 2D and 3D aromatic bridges. The most significant cooperative effect of the bridge on the dipole moment occurs in systems where there is some overlap between the HOMO and LUMO orbitals. This orbital overlap criterion may help to define the difference between “push-pull” systems in which electronic effects are mediated by the bridging moiety, and simpler systems in which the bridge acts as an electronically innocent spacer unit and through-space charge transfer/separation is dominant.


2011 ◽  
Vol 11 (5&6) ◽  
pp. 444-455
Author(s):  
Knut Bakke ◽  
Cláudio Furtado

In this work, we propose a new formulation allowing to realize the holonomic quantum computation with neutral particles with a permanent magnetic dipole moments interacting with an external electric field in the presence of a topological defect. We show that both the interaction of the electric field with the magnetic dipole moment and the presence of topological defect generate independent contributions to the geometric quantum phases which can be used to describe any arbitrary rotation on the magnetic dipole moment without using the adiabatic approximation.


1977 ◽  
Vol 32 (2) ◽  
pp. 152-155 ◽  
Author(s):  
J. Wiese ◽  
L. Engelbrecht ◽  
H. Dreizler

Results of a microwave investigation of the molecules 2-Cyanothiophene and 2-Cyanofurane are reported. The microwave spectrum of 2-Cyanothiophene was examined in the frequency range of 13 -40 GHz mainly to get a more accurate rotational constant A from the assignment of μb-btransitions. From the resolved hyperfine structure due to nuclear quadrupole coupling of the 14N-nucleus the quadrupole coupling constant X+=Xbb + Xcc was determined for 2-Cyanothiophene. No information for X- was available from the measured transitions.From Stark effect studies the dipole moments were determined for both molecules. The nuclear quadrupole coupling as a perturbation of the second order Stark effect was included in the Stark effect analysis


1975 ◽  
Vol 30 (3) ◽  
pp. 287-291 ◽  
Author(s):  
I. Gryczyński ◽  
A. Kawski

A variation of the temperature changes the static dielectric constant (ε) and the refractive index (n) of solvents and, in conjunction with the measurement of solvent shifts of absorption and fluorescence maxima, allows the investigation of dipole moment changes of solutes in the excited state. For this purpose, investigations of the temperature dependences of ε and n of some pure and mixed solvents of different polarities have been made. It is found that the excited dipole moments of indole, 1,2-dimethylindole, 2,3-dimethylindole and tryptophan obtained from the shifts of the fluorescence maxima in mixed solvents at high temperatures are in good agreement with those obtained in other ways.


Sign in / Sign up

Export Citation Format

Share Document