Multi-stimuli Responsive Bottlebrush-Colloid Janus Nanoparticles Toward Emulsion Interfacial Manipulation and Catalysis

2022 ◽  
Author(s):  
Xi Chen ◽  
Zhangyan Chen ◽  
Li Ma

A general approach is proposed to large scale synthesize multi-stimuli responsive bottlebrush-colloid Janus nanoparticles (JNPs) by preferentially tuning the composition of a single chain nanoparticle (SCNP). The starting SCNP is...

2020 ◽  
Vol 56 (27) ◽  
pp. 3875-3878 ◽  
Author(s):  
Jiawei Wang ◽  
Xi Chen ◽  
Fengzheng Lang ◽  
Liping Yang ◽  
Dong Qiu ◽  
...  

A general method is proposed to large scale synthesize tadpole-like single-chain Janus nanoparticles with a tunable head composition.


2021 ◽  
Author(s):  
Wei Wen ◽  
Aihua Chen

Self-assembly of amphiphilic single chain Janus nanoparticles (SCJNPs) is a novel and promising approach to fabricate assemblies with diversified morphologies. However, the experimental research of the self-assembly behavior of SCJNPs...


2020 ◽  
Vol 29 (5) ◽  
pp. 1115-1117
Author(s):  
Jiawei Tan ◽  
Haisong Lin ◽  
Shuyu Lin ◽  
Wenzhuo Yu ◽  
Jialun Zhu ◽  
...  

2019 ◽  
Vol 256 ◽  
pp. 05003
Author(s):  
Tian Liu ◽  
Yongfu Chen ◽  
Zhiyong Jin ◽  
Kai Li ◽  
Zhenting Wang ◽  
...  

The graph optimization has become the mainstream technology to solve the problems of SLAM (simultaneous localization and mapping). The pose graph in the graph based SLAM is consisted with a series of nodes and edges that connect the adjacent or related poses. With the widespread use of mobile robots, the scale of pose graph has rapidly increased. Therefore, optimizing a large-scale pose graph is the bottleneck of application of graph based SLAM. In this paper, we propose an optimization method basing on the decomposition of pose graph, of which we have noticed the sparsity. With the extraction of the Single-chain and the Parallel-chain, the pose graph is decomposed into many small subgraphs. Compared with directly processing the original graph, the speed of calculation is accelerated by separately optimizing the subgraph, which is because the computational complexity is increasing exponentially with the increase of the graph’s scale. This method we proposed is very suitable for the current multi-threaded framework adopted in the mainstream SLAM, which separately calculate the subgraph decomposed by our method, rather than the original optimization requiring a large block of time in once may cause CPU obstruction. At the end of the paper, our algorithm is validated with the open source dataset of the mobile robot, of which the result illustrates our algorithm can reduce the one-time resource consumption and the time consumption of the calculation with the same map-constructing accuracy.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Tao Chen ◽  
Huan-Yu Zhao ◽  
Rui Shi ◽  
Wen-Feng Lin ◽  
Xiang-Meng Jia ◽  
...  

AbstractAdding small nanoparticles (NPs) into polymer melt can lead to a non-Einstein-like decrease in viscosity. However, the underlying mechanism remains a long-standing unsolved puzzle. Here, for an all-polymer nanocomposite formed by linear polystyrene (PS) chains and PS single-chain nanoparticles (SCNPs), we perform large-scale molecular dynamics simulations and experimental rheology measurements. We show that with a fixed (small) loading of the SCNP, viscosity reduction (VR) effect can be largely amplified with an increase in matrix chain length $$N$$N, and that the system with longer polymer chains will have a larger VR. We demonstrate that such $$N$$N-dependent VR can be attributed to the friction reduction experienced by polymer segment blobs which have similar size and interact directly with these SCNPs. A theoretical model is proposed based on the tube model. We demonstrate that it can well describe the friction reduction experienced by melt polymers and the VR effect in these composite systems.


2017 ◽  
Vol 232 (3) ◽  
pp. 391-402 ◽  
Author(s):  
Joseph Aizen ◽  
Lian Hollander-Cohen ◽  
Michal Shpilman ◽  
Berta Levavi-Sivan

Currently, spawning is induced in carp species by carp pituitary extract (CPE) and a combination of synthetic agonist of GnRH combined with a dopamine antagonist. The main goal of this study was the production of recombinant gonadotropins (GtHs) on a large scale to serve as an alternative to currently used agents. We produced carp (c) recombinant (r) Lh as a single chain in the methylotrophic yeast Pichia pastoris. Lha subunit was joined with Lhb subunit with a flexible linker of three glycine–serine repeats and six Histidines to form a mature protein, the β-subunit formed the N-terminal part and the α-subunit formed the C-terminal part. The ability of the rcLh to elicit biological response was tested by in vivo stimulation of estradiol (E2) and 17α,20β-dihydroxy-4-pregnen-3-one (DHP) and by its in vivo potency to induce ovulation and spawning induction. rcLh tested in this work significantly enhanced both E2 and DHP secretion in a dose-dependent manner similar to the results obtained with CPE. E2 levels showed a moderate rise following the priming injection and a subsequent decrease during the rest of the trial. DHP levels were only increased after the resolving injection, approximately 5 h before spawning. At the highest dose of rcLh (350 µg/kg BW), the recombinant protein was more efficient than CPE in terms of both spawning success and fertilization rate. It is shown here that rcLh can elicit the secretion of DHP in vivo and actually trigger spawning. These novel findings introduce the potential of utilizing recombinant gonadotropins in aquaculture.


2020 ◽  
Vol 6 (18) ◽  
pp. eaaz6511 ◽  
Author(s):  
Gongjin Li ◽  
Zhe Ma ◽  
Chunyu You ◽  
Gaoshan Huang ◽  
Enming Song ◽  
...  

The sensing module that converts physical or chemical stimuli into electrical signals is the core of future smart electronics in the post-Moore era. Challenges lie in the realization and integration of different detecting functions on a single chip. We propose a new design of on-chip construction for low-power consumption sensor, which is based on the optoelectronic detection mechanism with external stimuli and compatible with CMOS technology. A combination of flipped silicon nanomembrane phototransistors and stimuli-responsive materials presents low-power consumption (CMOS level) and demonstrates great functional expansibility of sensing targets, e.g., hydrogen concentration and relative humidity. With a device-first, wafer-compatible process introduced for large-scale silicon flexible electronics, our work shows great potential in the development of flexible and integrated smart sensing systems for the realization of Internet of Things applications.


Sign in / Sign up

Export Citation Format

Share Document