scholarly journals Biologically active recombinant carp LH as a spawning-inducing agent for carp

2017 ◽  
Vol 232 (3) ◽  
pp. 391-402 ◽  
Author(s):  
Joseph Aizen ◽  
Lian Hollander-Cohen ◽  
Michal Shpilman ◽  
Berta Levavi-Sivan

Currently, spawning is induced in carp species by carp pituitary extract (CPE) and a combination of synthetic agonist of GnRH combined with a dopamine antagonist. The main goal of this study was the production of recombinant gonadotropins (GtHs) on a large scale to serve as an alternative to currently used agents. We produced carp (c) recombinant (r) Lh as a single chain in the methylotrophic yeast Pichia pastoris. Lha subunit was joined with Lhb subunit with a flexible linker of three glycine–serine repeats and six Histidines to form a mature protein, the β-subunit formed the N-terminal part and the α-subunit formed the C-terminal part. The ability of the rcLh to elicit biological response was tested by in vivo stimulation of estradiol (E2) and 17α,20β-dihydroxy-4-pregnen-3-one (DHP) and by its in vivo potency to induce ovulation and spawning induction. rcLh tested in this work significantly enhanced both E2 and DHP secretion in a dose-dependent manner similar to the results obtained with CPE. E2 levels showed a moderate rise following the priming injection and a subsequent decrease during the rest of the trial. DHP levels were only increased after the resolving injection, approximately 5 h before spawning. At the highest dose of rcLh (350 µg/kg BW), the recombinant protein was more efficient than CPE in terms of both spawning success and fertilization rate. It is shown here that rcLh can elicit the secretion of DHP in vivo and actually trigger spawning. These novel findings introduce the potential of utilizing recombinant gonadotropins in aquaculture.

Endocrinology ◽  
2007 ◽  
Vol 148 (8) ◽  
pp. 3977-3986 ◽  
Author(s):  
Satarupa Roy ◽  
Sunita Setlur ◽  
Rupali A. Gadkari ◽  
H. N. Krishnamurthy ◽  
Rajan R. Dighe

The strategy of translationally fusing the α- and β-subunits of human chorionic gonadotropin (hCG) into a single-chain molecule has been used to produce novel analogs of hCG. Previously we reported expression of a biologically active single-chain analog hCGαβ expressed using Pichia expression system. Using the same expression system, another analog, in which the α-subunit was replaced with the second β-subunit, was expressed (hCGββ) and purified. hCGββ could bind to LH receptor with an affinity three times lower than that of hCG but failed to elicit any response. However, it could inhibit response to the hormone in vitro in a dose-dependent manner. Furthermore, it inhibited response to hCG in vivo indicating the antagonistic nature of the analog. However, it was unable to inhibit human FSH binding or response to human FSH, indicating the specificity of the effect. Characterization of hCGαβ and hCGββ using immunological tools showed alterations in the conformation of some of the epitopes, whereas others were unaltered. Unlike hCG, hCGββ interacts with two LH receptor molecules. These studies demonstrate that the presence of the second β-subunit in the single-chain molecule generated a structure that can be recognized by the receptor. However, due to the absence of α-subunit, the molecule is unable to elicit response. The strategy of fusing two β-subunits of glycoprotein hormones can be used to produce antagonists of these hormones.


Endocrinology ◽  
2005 ◽  
Vol 146 (6) ◽  
pp. 2845-2850 ◽  
Author(s):  
Naiel Azzam ◽  
Rinat Bar-Shalom ◽  
Zaki Kraiem ◽  
Fuad Fares

Abstract TSH is a heterodimeric glycoprotein hormone synthesized in the pituitary and composed of a specific β-subunit and a common α-subunit shared with FSH, LH, and human chorionic gonadotropin. The heterodimer was previously converted into a biologically active single chain protein by genetic fusion of the genes coding to both subunits in the presence of the carboxy-terminal sequence of human (h) chorionic gonadotropin-β subunit as a linker [hTSHβ-carboxyl-terminal peptide (CTP)-α]. N-linked carbohydrate-free single-chain TSH variants were constructed by site-directed mutagenesis and overlapping PCR: one devoid of both N-linked oligosaccharide chains on the α-subunit (hTSHβ-CTP-αdeg) and the other lacking also the oligosaccharides on the β-subunit (hTSHβdeg-CTP-αdeg). These variants were expressed in Chinese hamster ovary cells and secreted into the culture media. We have previously reported that the variants block the activities of hTSH and thyroid-stimulating immunoglobulins in cultured human thyroid follicles. In the present study, binding affinity of hTSH variants to hTSH receptor and the localization of the antagonistic effect were examined. Moreover, the effect of these variants on TSH activity was tested in vivo. The results of the present study indicate that the hTSH variants bind to the hTSH receptor with high affinity. Experiments using forskolin also indicated that the N-linked carbohydrate-free TSH single-chain variants inhibit TSH activity at the receptor-binding site and not at a postreceptor level. Moreover, the variants significantly inhibited (about 50%) TSH activity with respect to thyroid hormone secretion in vivo in mice. These variants may offer a novel therapeutic strategy in treating hyperthyroidism.


1997 ◽  
Vol 78 (04) ◽  
pp. 1202-1208 ◽  
Author(s):  
Marianne Kjalke ◽  
Julie A Oliver ◽  
Dougald M Monroe ◽  
Maureane Hoffman ◽  
Mirella Ezban ◽  
...  

SummaryActive site-inactivated factor VIIa has potential as an antithrombotic agent. The effects of D-Phe-L-Phe-L-Arg-chloromethyl ketone-treated factor VIla (FFR-FVIIa) were evaluated in a cell-based system mimicking in vivo initiation of coagulation. FFR-FVIIa inhibited platelet activation (as measured by expression of P-selectin) and subsequent large-scale thrombin generation in a dose-dependent manner with IC50 values of 1.4 ± 0.8 nM (n = 8) and 0.9 ± 0.7 nM (n = 7), respectively. Kd for factor VIIa binding to monocytes ki for FFR-FVIIa competing with factor VIIa were similar (11.4 ± 0.8 pM and 10.6 ± 1.1 pM, respectively), showing that FFR-FVIIa binds to tissue factor in the tenase complex with the same affinity as factor VIIa. Using platelets from volunteers before and after ingestion of aspirin (1.3 g), there were no significant differences in the IC50 values of FFR-FVIIa [after aspirin ingestion, the IC50 values were 1.7 ± 0.9 nM (n = 8) for P-selectin expression, p = 0.37, and 1.4 ± 1.3 nM (n = 7) for thrombin generation, p = 0.38]. This shows that aspirin treatment of platelets does not influence the inhibition of tissue factor-initiated coagulation by FFR-FVIIa, probably because thrombin activation of platelets is not entirely dependent upon expression of thromboxane A2.


1990 ◽  
Vol 127 (1) ◽  
pp. 149-159 ◽  
Author(s):  
S. Muttukrishna ◽  
P. G. Knight

ABSTRACT Primary cultures of ovine pituitary cells (from adult ewes) were used to investigate the actions of steroid-free bovine follicular fluid (bFF) and highly-purified Mr 32 000 bovine inhibin on basal and gonadotrophin-releasing hormone (GnRH)-induced release of FSH and LH. Residual cellular contents of each hormone were also determined allowing total gonadotrophin content/well to be calculated. As in rats, both crude and highly purified inhibin preparations promoted a dose (P < 0·001)- and time (P < 0·001)-dependent suppression of basal and GnRH-induced release of FSH as well as an inhibition of FSH synthesis, reflected by a fall in total FSH content/well. However, while neither inhibin preparation affected basal release of LH or total LH content/well, GnRH-induced LH release was significantly (P< 0·001) increased by the presence of either bFF (+ 75%) or highly-purified inhibin (+ 64%) in a dose- and time-dependent manner. This unexpected action of bFF on GnRH-induced LH release was abolished in the presence of 5 μl specific anti-inhibin serum, confirming that the response was indeed mediated by inhibin. Furthermore, neither oestradiol-17β (1 pmol/l–10 nmol/l) nor monomeric α-subunit of bovine inhibin (2·5–40 ng/ml) significantly affected basal or GnRH-induced release of LH. These in-vitro findings for the ewe lend support to a number of recent in-vivo observations and indicate that, in addition to its well-documented suppressive effect on the synthesis and secretion of FSH, inhibin may actually facilitate LH release in this species, in marked contrast to its action in the rat. Journal of Endocrinology (1990) 127, 149–159


2018 ◽  
Author(s):  
Travis L Massey ◽  
Samantha R Santacruz ◽  
Jason F Hou ◽  
Kristofer SJ Pister ◽  
Jose M Carmena ◽  
...  

Abstract.Objective: Microwire and Utah-style neural recording arrays are the predominant devices used for cortical neural recording, but the implanted electrodes cause a significant adverse biological response and suffer from well-studied performance degradation. Recent work has demonstrated that carbon fiber electrodes do not elicit this same adverse response, but these existing designs are not practically scalable to hundreds or thousands of recording sites. We present technology that overcomes these issues while additionally providing fine electrode pitch for spatial oversampling.Approach: We present a 32-channel carbon fiber monofilament-based intracortical neural recording array fabricated through a combination of bulk silicon microfabrication processing and microassembly. This device represents the first truly two-dimensional carbon fiber neural recording array. The density, channel count, and size scale of this array are enabled by an out-of-plane microassembly technique in which individual fibers are inserted through metallized and isotropically conductive adhesive-filled holes in an oxide-passivated microfabricated silicon substrate.Main results: Five-micron diameter fibers are spaced at a pitch of 38 microns, four times denser than state of the art one-dimensional arrays. The fine diameter of the carbon fibers affords both minimal cross-section and nearly three orders of magnitude greater lateral compliance than standard tungsten microwires. Typical 1 kHz impedances are on the order of hundreds of kiloohms, and successful in vivo recording is demonstrated in the motor cortex of a rat. 22 total units are recorded on 20 channels, with unit SNR ranging from 0.85 to 4.2.Significance: This is the highest density microwire-style electrode array to date, and this fabrication technique is scalable to a larger number of electrodes and allows for the potential future integration of microelectronics. Large-scale carbon fiber neural recording arrays are a promising technology for reducing the inflammatory response and increasing the information density, particularly in neural recording applications where microwire arrays are already used.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 266-266
Author(s):  
Shan Lin ◽  
Clement Larrue ◽  
Nastassja K. Scheidegger ◽  
Bo Kyung A. Seong ◽  
Neekesh V Dharia ◽  
...  

Abstract First-generation, large-scale functional genomic screens have revealed hundreds of potential genetic vulnerabilities in acute myeloid leukemia (AML), a devastating hematologic malignancy with poor overall survival. Because these large-scale genetic screens were primarily performed in vitro in established AML cell lines, their translational relevance has been debated. Therefore, we established a protocol for CRISPR screening in orthotopic xenograft models of human AML, including patient-derived-xenograft (PDX) models that are tractable for CRISPR-editing. We first defined experimental conditions necessary for an optimal in vivo screen via barcoding experiments. We determined that sub-lethal irradiation was necessary for improved barcode representation in bone marrow and to reduce mouse-to-mouse variation. Moreover, it was critical to combine samples from multiple mice to achieve complete in vivo library representation. Next, using the Broad DepMap and other publicly available functional genomic screen data, we identified 200 genes that were stronger dependencies in AML cell lines compared to all other cancer types screened. Using this list, we created a secondary library and performed parallel in vivo and in vitro screens using the MV4-11 and U937 cell lines and a PDX model. In vitro and in vivo hits were surprisingly well correlated, although a modest number of targets did not score well in vivo. Notably, dependencies identified across AML cell line models were strongly recapitulated in the PDX model, validating the application of AML cell lines for dependency discovery. Our in vivo screens nominated the mitochondria-localized RING-type ubiquitin E3 ligase MARCH5 as a potential therapeutic target in AML. Using CRISPR, we first validated this in vitro dependency on MARCH5 and determined that MARCH5 is a critical guardian to prevent apoptosis in AML. MARCH5 depletion activates the canonical mitochondrial apoptosis pathway in a BAX/BAK1-dependent manner. Multiple genome-wide screens revealed that a dependency on MARCH5 is strongly correlated with a dependency on MCL1, but not other anti-apoptotic BCL2-family members, across the AML cell lines in the screen. As observed with MCL1 inhibition, MARCH5 depletion sensitized AML cells to venetoclax, a BCL2-specific inhibitor FDA-approved in combination with a hypomethylating agent for the treatment of older adults with AML. Importantly, MARCH5 depletion diminished the venetoclax resistance induced by MCL1 overexpression but not that caused by BCLXL overexpression. Altogether, these results suggest that MARCH5 is required for maintaining MCL1 activity specifically. Since there are no small molecule inhibitors directed against MARCH5, we deployed a dTAG system as an approximation of pharmacological inhibition. This approach uses a hetero-bifunctional small molecule that binds the FKBP12 F36V-fused MARCH5 and the E3 ligase VHL, leading to the ubiquitination and proteasome-mediated degradation of the fusion protein. dTAG-MARCH5 cells were established via deleting endogenous MARCH5 by CRISPR and expressing exogenous FKBP-tagged MARCH5 protein. MARCH5 degradation with the dTAG molecule dTAG V-1 markedly impaired cell growth in vitro. Additionally, we demonstrated the utility of dTAG system in vivo using a PDX model. The combination treatment of dTAG V-1 and venetoclax elicited a much stronger anti-leukemic effect compared to the treatment with only venetoclax or dTAG V-1, further highlighting MARCH5 as a promising synergistic target for enhancing the efficacy of venetoclax in AML. Taken together, our in vivo screening approach, coupled with CRISPR-competent PDX models and dTAG-directed protein degradation, constitute a useful platform for prioritizing AML targets emerging from in vitro screens to serve as the starting point for therapy development. Disclosures Dharia: Genentech: Current Employment. Piccioni: Merck Research Laboratories: Current Employment. Stegmaier: Bristol Myers Squibb: Consultancy; KronosBio: Consultancy; AstraZeneca: Consultancy; Auron Therapeutics: Consultancy, Current equity holder in publicly-traded company; Novartis: Research Funding.


1994 ◽  
Vol 71 (01) ◽  
pp. 054-061 ◽  
Author(s):  
Mayumi Ono ◽  
Hiroyuki Fujiwara ◽  
Takaaki Okafuji ◽  
Tomoko Enjoh ◽  
Katsuhiko Nawa

SummaryIn order to elucidate the role of protein C (PC) in the rat, we expressed, purified, and characterized recombinant rat PC. The purified recombinant rat PC was 70–90% two-chain (41 kDa heavy chain; 22 and 23 kDa light chain) and 10–30% single-chain (61 kDa). Amino acid analysis confirmed the presence of 10 moles of γ-carboxyglutamic acid residues per mol of protein. For comparison, plasma rat PC was purified from a barium citrate precipitate using similar method. Plasma rat PC was a two-chain form (41 kDa heavy chain; 22 kDa light chain) with no detectable single-chain nor 23 kDa light chain. For determination of the in vitro secreted species, primary cultured rat hepatocytes were incubated for 6 h with methionine-free MEM containing vitamin K1, aprotinin, and [35S]methionine. The supernatant was immunoprecipitated and analyzed by SDS-PAGE followed by autoradiography. Approximately 90% of the PC radioactivity migrated as a two-chain molecule. These results indicate that rat PC is secreted mainly as a two-chain molecule from the liver. PROTAC-activated forms of recombinant rat PC, plasma rat PC, and plasma human PC hydrolyzed the S-2366 chromogenic substrate at the same rate Recombinant rat PC was also activated by the thrombin-thrombomodulin complex at a rate similar to plasma lat PC. The anticoagulant activities of the three activated PCs were examined in rat plasma. Both recombinant and plasma rat PC prolonged the activated partial thromboplastin time in a dose-dependent manner, but plasma human PC was less effective. These results suggest that recombinant rat PC is applicable for in vivo thrombosis studies in the rat.


Antibodies ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 16 ◽  
Author(s):  
Gustavo Aguilar ◽  
Shinya Matsuda ◽  
M. Alessandra Vigano ◽  
Markus Affolter

Polyclonal and monoclonal antibodies have been invaluable tools to study proteins over the past decades. While indispensable for most biological studies including developmental biology, antibodies have been used mostly in fixed tissues or as binding reagents in the extracellular milieu. For functional studies and for clinical applications, antibodies have been functionalized by covalently fusing them to heterologous partners (i.e., chemicals, proteins or other moieties). Such functionalized antibodies have been less widely used in developmental biology studies. In the past few years, the discovery and application of small functional binding fragments derived from single-chain antibodies, so-called nanobodies, has resulted in novel approaches to study proteins during the development of multicellular animals in vivo. Expression of functionalized nanobody fusions from integrated transgenes allows manipulating proteins of interest in the extracellular and the intracellular milieu in a tissue- and time-dependent manner in an unprecedented manner. Here, we describe how nanobodies have been used in the field of developmental biology and look into the future to imagine how else nanobody-based reagents could be further developed to study the proteome in living organisms.


2018 ◽  
Vol 115 (20) ◽  
pp. E4594-E4603 ◽  
Author(s):  
Mackenzie J. Parker ◽  
Ailiena O. Maggiolo ◽  
William C. Thomas ◽  
Albert Kim ◽  
Steve P. Meisburger ◽  
...  

The high fidelity of DNA replication and repair is attributable, in part, to the allosteric regulation of ribonucleotide reductases (RNRs) that maintains proper deoxynucleotide pool sizes and ratios in vivo. In class Ia RNRs, ATP (stimulatory) and dATP (inhibitory) regulate activity by binding to the ATP-cone domain at the N terminus of the large α subunit and altering the enzyme’s quaternary structure. Class Ib RNRs, in contrast, have a partial cone domain and have generally been found to be insensitive to dATP inhibition. An exception is the Bacillus subtilis Ib RNR, which we recently reported to be inhibited by physiological concentrations of dATP. Here, we demonstrate that the α subunit of this RNR contains tightly bound deoxyadenosine 5′-monophosphate (dAMP) in its N-terminal domain and that dATP inhibition of CDP reduction is enhanced by its presence. X-ray crystallography reveals a previously unobserved (noncanonical) α2 dimer with its entire interface composed of the partial N-terminal cone domains, each binding a dAMP molecule. Using small-angle X-ray scattering (SAXS), we show that this noncanonical α2 dimer is the predominant form of the dAMP-bound α in solution and further show that addition of dATP leads to the formation of larger oligomers. Based on this information, we propose a model to describe the mechanism by which the noncanonical α2 inhibits the activity of the B. subtilis Ib RNR in a dATP- and dAMP-dependent manner.


Sign in / Sign up

Export Citation Format

Share Document