Biodegradable Bismuth–Gadolinium-Based Nano Contrast Agent for Accurate Identification and Imaging of Renal Insufficiency In Vivo

Author(s):  
Jing Zhang ◽  
Kang Song ◽  
Jing Ping ◽  
Jun Du ◽  
Yun Sun ◽  
...  

Magnetic resonance imaging (MRI) with excellent contrast for soft tissue imaging is often used for the diagnosis of kidney disorders, but its resolution is not high and requires the assistance...

2005 ◽  
Vol 2 (2) ◽  
pp. 133-140 ◽  
Author(s):  
D. Mietchen ◽  
H. Keupp ◽  
B. Manz ◽  
F. Volke

Abstract. For more than a decade, Magnetic Resonance Imaging (MRI) has been routinely employed in clinical diagnostics because it allows non-invasive studies of anatomical structures and physiological processes in vivo and to differentiate between healthy and pathological states, particularly of soft tissue. Here, we demonstrate that MRI can likewise be applied to fossilized biological samples and help in elucidating paleopathological and paleoecological questions: Five anomalous guards of Jurassic and Cretaceous belemnites are presented along with putative paleopathological diagnoses directly derived from 3D MR images with microscopic resolution. Syn vivo deformities of both the mineralized internal rostrum and the surrounding former soft tissue can be traced back in part to traumatic events of predator-prey-interactions, and partly to parasitism. Besides, evidence is presented that the frequently observed anomalous apical collar might be indicative of an inflammatory disease. These findings highlight the potential of Magnetic Resonance techniques for further paleontological applications.


2005 ◽  
Vol 2 (2) ◽  
pp. 239-260 ◽  
Author(s):  
D. Mietchen ◽  
H. Keupp ◽  
B. Manz ◽  
F. Volke

Abstract. For more than a decade, Magnetic Resonance Imaging (MRI) has been routinely employed in clinical diagnostics because it allows to non-invasively study anatomical structures and physiological processes in vivo and to differentiate between healthy and pathological states, particularly in soft tissue. Here, we demonstrate that MRI can likewise be applied to fossilized biological samples and help in elucidating paleopathological and paleoecological questions: Five anomalous guards of Jurassic and Cretaceous belemnites are presented along with putative paleopathological scenarios directly derived from 3D Magnetic Resonance images with microscopic resolution. These syn vivo deformities of both the mineralized internal rostrum and the surrounding former soft tissue can be traced back in part to traumatic events of predator-prey-interactions, and partly to parasitism. Evidence is presented that the frequently observed anomalous apical collar might be indicative of an inflammatory disease. Finally, the potential of Magnetic Resonance techniques for further paleontological applications is being discussed.


Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1513
Author(s):  
Fouzi Mouffouk ◽  
Hacene Serrai ◽  
Sourav Bhaduri ◽  
Rik Achten ◽  
Mozhdeh Seyyedhamzeh ◽  
...  

Detecting tissue pH in vivo is extremely vital for medical diagnosis and formulation of treatment decisions. To this end, many investigations have been carried out to develop an accurate and efficient method of in vivo pH measurement. Most of the techniques developed so far suffer from inadequate accuracy, due to poor sensitivity at low concentration of the target or nonspecific interactions within the tissue matrix. To overcome these issues, we describe herein the development of a simple, yet reliable, way to estimate pH with high precision using a Gd(III)-DOTA-silyl-based acid-labile group as a pH-sensitive contrast agent with Magnetic Resonance Imaging (MRI). With this method, a change in T 1 weighted image intensity of the newly developed pH-sensitive contrast is directly linked to the proton concentration in the media. As a result, we were able estimate the pH of the target with 95% reliability.


2021 ◽  
Vol 20 ◽  
pp. 153303382110365
Author(s):  
Lin Qiu ◽  
Shuwen Zhou ◽  
Ying Li ◽  
Wen Rui ◽  
Pengfei Cui ◽  
...  

Bifunctional magnetic/fluorescent core-shell silica nanospheres (MNPs) encapsulated with the magnetic Fe3O4 core and a derivate of 8-amimoquinoline (N-(quinolin-8-yl)-2-(3-(triethoxysilyl) propylamino) acetamide) (QTEPA) into the shell were synthesized. These functional MNPs were prepared with a modified stöber method and the formed Fe3O4@SiO2-QTEPA core-shell nanocomposites are biocompatible, water-dispersible, and stable. These prepared nanoparticles were characterized by X-ray power diffraction (XRD), transmission electron microscopy (TEM), thermoelectric plasma Quad II inductively coupled plasma mass spectrometry (ICP-MS), superconducting quantum interference device (SQUID), TG/DTA thermal analyzer (TGA) and Fourier transform infrared spectroscopy (FTIR). Further application of the nanoparticles in detecting Zn2+ was confirmed by the fluorescence experiment: the nanosensor shows high selectivity and sensitivity to Zn2+ with a 22-fold fluorescence emission enhancement in the presence of 10 μM Zn2+. Moreover, the transverse relaxivity measurements show that the core-shell MNPs have T2 relaxivity (r2) of 155.05 mM−1 S−1 based on Fe concentration on the 3.0 T scanner, suggesting that the compound can be used as a negative contrast agent for MRI. Further in vivo experiments showed that these MNPs could be used as MRI contrast agent. Therefore, the new nanosensor provides the dual modality of magnetic resonance imaging and optical imaging.


2021 ◽  
Vol 10 (11) ◽  
pp. 2461
Author(s):  
José María Mora-Gutiérrez ◽  
María A. Fernández-Seara ◽  
Rebeca Echeverria-Chasco ◽  
Nuria Garcia-Fernandez

Renal magnetic resonance imaging (MRI) techniques are currently in vogue, as they provide in vivo information on renal volume, function, metabolism, perfusion, oxygenation, and microstructural alterations, without the need for exogenous contrast media. New imaging biomarkers can be identified using these tools, which represent a major advance in the understanding and study of the different pathologies affecting the kidney. Diabetic kidney disease (DKD) is one of the most important diseases worldwide due to its high prevalence and impact on public health. However, its multifactorial etiology poses a challenge for both basic and clinical research. Therefore, the use of novel renal MRI techniques is an attractive step forward in the comprehension of DKD, both in its pathogenesis and in its detection and surveillance in the clinical practice. This review article outlines the most promising MRI techniques in the study of DKD, with the purpose of stimulating their clinical translation as possible tools for the diagnosis, follow-up, and monitoring of the clinical impacts of new DKD treatments.


Sign in / Sign up

Export Citation Format

Share Document