scholarly journals Quantum mechanical modelling of phosphorus qubits in silicene under constrained magnetization

RSC Advances ◽  
2021 ◽  
Vol 11 (54) ◽  
pp. 33890-33894
Author(s):  
Anton A. Gnidenko ◽  
Andrey N. Chibisov ◽  
Mary A. Chibisova ◽  
Anastasiia V. Prokhorenko

The dependent behaviour of a pair of phosphorus atoms in silicene was shown by a DFT calculation with constrained magnetization. The total energy and charge distribution change with the rotation of the local magnetic moment of the P atoms.

Author(s):  
Aleksandr Prokhorenko ◽  
Yuri Gnidenko ◽  
Yuri Chibisov ◽  
Yuri Chibisova

The behavior (substitution and adsorption) of a phosphorus atom on the surface of silicene is studied using quantum mechanical calculations. The most favorable positions, binding energy and activation of the phosphorus diffusion barrier have been established. The change in the local magnetic moment of the phosphorus atom is described depending on its position and the position of the surrounding silicon elements.


Author(s):  
Philip Coppens

The total energy of a quantum-mechanical system can be written as the sum of its kinetic energy T, Coulombic energy ECoui and exchange and electron correlation contributions Ex and Ecorr, respectively: . . . E=T+Ecoui+Ex+Ecorr (9.1) . . . The only term in this expression that can be derived directly from the charge distribution is the Coulombic energy. It consists of nucleus–nucleus repulsion, nucleus–electron attraction, and electron–electron repulsion terms.


1993 ◽  
Vol 07 (26) ◽  
pp. 4305-4329 ◽  
Author(s):  
C.Z. WANG ◽  
B.L. ZHANG ◽  
K.M. HO ◽  
X.Q. WANG

The recent development in understanding the structures, relative stability, and electronic properties of large fullerenes is reviewed. We describe an efficient scheme to generate the ground-state networks for fullerene clusters. Combining this scheme with quantum-mechanical total-energy calculations, the ground-state structures of fullerenes ranging from C 20 to C 100 have been studied. Fullerenes of sizes 60, 70, and 84 are found to be energetically more stable than their neighbors. In addition to the energies, the fragmentation stability and the chemical reactivity of the clusters are shown to be important in determining the abundance of fullerene isomers.


2015 ◽  
Vol 6 ◽  
pp. 1946-1956 ◽  
Author(s):  
Nikolay V Klenov ◽  
Alexey V Kuznetsov ◽  
Igor I Soloviev ◽  
Sergey V Bakurskiy ◽  
Olga V Tikhonova

We present our approach for a consistent, fully quantum mechanical description of the magnetization reversal process in natural and artificial atomic systems by means of short magnetic pulses. In terms of the simplest model of a two-level system with a magnetic moment, we analyze the possibility of a fast magnetization reversal on the picosecond timescale induced by oscillating or short unipolar magnetic pulses. We demonstrate the possibility of selective magnetization reversal of a superconducting flux qubit using a single flux quantum-based pulse and suggest a promising, rapid Λ-scheme for resonant implementation of this process. In addition, the magnetization reversal treatment is fulfilled within the framework of the macroscopic theory of the magnetic moment, which allows for the comparison and explanation of the quantum and classical behavior.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1732 ◽  
Author(s):  
Martin Friák ◽  
Anton Slávik ◽  
Ivana Miháliková ◽  
David Holec ◽  
Monika Všianská ◽  
...  

The intermetallic compound Fe 2 AlTi (alternatively Fe 2 TiAl) is an important phase in the ternary Fe-Al-Ti phase diagram. Previous theoretical studies showed a large discrepancy of approximately an order of magnitude between the ab initio computed magnetic moments and the experimentally measured ones. To unravel the source of this discrepancy, we analyze how various mechanisms present in realistic materials such as residual strain effects or deviations from stoichiometry affect magnetism. Since in spin-unconstrained calculations the system always evolves to the spin configuration which represents a local or global minimum in the total energy surface, finite temperature spin effects are not well described. We therefore turn the investigation around and use constrained spin calculations, fixing the global magnetic moment. This approach provides direct insight into local and global energy minima (reflecting metastable and stable spin phases) as well as the curvature of the energy surface, which correlates with the magnetic entropy and thus the magnetic configuration space accessible at finite temperatures. Based on this approach, we show that deviations from stoichiometry have a huge impact on the local magnetic moment and can explain the experimentally observed low magnetic moments.


The aim of this research is to detect zwittterionic structure of the aspartic acid and confirm the experimental spectra with quantum chemical calculations. The experimental IR and Raman spectra of aspartic acid powder show no vibrational bands of OH and NH stretching in expected spectral region. We assume that zwitterionic structure of aspartic acid is responsible for lowering the frequencies of these vibrations. An extensive experimental and computational research supports this assumption. Our DFT calculation strongly suggests the need for the dielectric environment in order to stabilize the zwitterionic structure of a single molecule. The network of intermolecular hydrogen bonding between aspartic acid molecules provides this dielectric environment. The DFT quantum mechanical calculations corroborate this assumption by optimizing a four-member group of molecules, which also gives an explanation of broad IR spectrum lines.


RSC Advances ◽  
2018 ◽  
Vol 8 (35) ◽  
pp. 19732-19738 ◽  
Author(s):  
Jinsen Han ◽  
Dongdong Kang ◽  
Jiayu Dai

The migration and magnetic properties of the bilayer graphene with intercalation compounds (BGICs) with magnetic elements are theoretically investigated based on first principles study.


Sign in / Sign up

Export Citation Format

Share Document