scholarly journals Oxygen and nitrogen enriched pectin-derived micro-meso porous carbon for CO2 uptake

RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 546-560
Author(s):  
Milad Vafaeinia ◽  
Mobin Safarzadeh Khosrowshahi ◽  
Hossein Mashhadimoslem ◽  
Hosein Banna Motejadded Emrooz ◽  
Ahad Ghaemi

Oxygen and nitrogen enriched micro–meso porous carbon powders have been prepared from pectin and melamine as oxygen and nitrogen containing organic precursors, respectively.

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 738
Author(s):  
Mohamed Gamal Mohamed ◽  
Mahmoud M. M. Ahmed ◽  
Wei-Ting Du ◽  
Shiao-Wei Kuo

In this study, we successfully synthesized two types of meso/microporous carbon materials through the carbonization and potassium hydroxide (KOH) activation for two different kinds of hyper-crosslinked polymers of TPE-CPOP1 and TPE-CPOP2, which were synthesized by using Friedel–Crafts reaction of tetraphenylethene (TPE) monomer with or without cyanuric chloride in the presence of AlCl3 as a catalyst. The resultant porous carbon materials exhibited the high specific area (up to 1100 m2 g−1), total pore volume, good thermal stability, and amorphous character based on thermogravimetric (TGA), N2 adsoprtion/desorption, and powder X-ray diffraction (PXRD) analyses. The as-prepared TPE-CPOP1 after thermal treatment at 800 °C (TPE-CPOP1-800) displayed excellent CO2 uptake performance (1.74 mmol g−1 at 298 K and 3.19 mmol g−1 at 273 K). Furthermore, this material possesses a high specific capacitance of 453 F g−1 at 5 mV s−1 comparable to others porous carbon materials with excellent columbic efficiencies for 10,000 cycle at 20 A g−1.


2016 ◽  
Vol 78 (8-3) ◽  
Author(s):  
Usman Dadum Hamza ◽  
Noor Shawal Nasri ◽  
Nor Aishah Saidina Amin ◽  
Jibril Mohammed ◽  
Husna Mohd Zain

Carbon dioxide is believed to be a major greenhouse gas (GHG) that contributes to global warming. In this study, palm shells were used as a precursor to prepare CO2 activated carbon sorbents via carbonization, chemical impregnation with K2CO3 and microwave activation.  Adsorption equilibrium data for CO2 adsorption on the porous carbon were obtained at different temperatures using static volumetric adsorption method. Langmuir, Freundlich, Sips and Toths models were used to correlate the experimental data. The CO2 adsorption capacity at 303.15, 343.15, 378.15 443.15 K and 1 bar on the sorbent was 2.71, 1.5, 0.77, 0.69 mmol/g respectively. Sips isotherm was found to have the best fit. The results indicated that the porous carbon sorbent prepared by carbonization and microwave K2CO3 assisted activation have good CO2 uptake. The porous carbons produced are therefore good candidates for CO2 adsorption applications


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3451
Author(s):  
Yuanjie Xiong ◽  
Yuan Wang ◽  
Housheng Jiang ◽  
Shaojun Yuan

Designing of porous carbon system for CO2 uptake has attracted a plenty of interest due to the ever-increasing concerns about climate change and global warming. Herein, a novel N rich porous carbon is prepared by in-situ chemical oxidation polyaniline (PANI) on a surface of multi-walled carbon nanotubes (MWCNTs), and then activated with KOH. The porosity of such carbon materials can be tuned by rational introduction of MWCNTs, adjusting the amount of KOH, and controlling the pyrolysis temperature. The obtained M/P-0.1-600-2 adsorbent possesses a high surface area of 1017 m2 g−1 and a high N content of 3.11 at%. Such M/P-0.1-600-2 adsorbent delivers an enhanced CO2 capture capability of 2.63 mmol g−1 at 298.15 K and five bars, which is 14 times higher than that of pristine MWCNTs (0.18 mmol g−1). In addition, such M/P-0.1-600-2 adsorbent performs with a good stability, with almost no decay in a successive five adsorption-desorption cycles.


2022 ◽  
Author(s):  
Mobin Safarzadeh Khowsroshahi ◽  
Hossein Mashhadimoslem ◽  
Hosein Banna Motejadded Emrooz ◽  
Ahad Ghaemi ◽  
Mahsa S Hosseini Naghavi

Abstract A green self-activating synthesis system (SASS) has been introduced for porous carbons. In the presented system, there is no external support for the activation process, and the activating agents are the circulating gases released during the pyrolysis treatment. As a typical case, this system was used for the synthesis of hierarchical porous carbons from celery wastes in hydroponic greenhouses. Based on the adsorption-desorption results, the optimal porous carbons were synthesized at 700°C, providing a surface area as high as 1126 m2g−1 and micropore volume of approximately 0.7 cm3g−1. X-ray photoelectron spectroscopy indicated the presence of graphitic nitrogen in the synthesized porous carbon structure. The synthesized porous carbons were applied as an adsorbent for CO2 capture. CO2 adsorption was performed at low and high pressures at various temperatures. Under low pressures (0-1 bar), the synthesized carbons adsorbed 5 mmolg−1 at 0°C and 2.03 mmolg−1 at 25°C. The adsorption capacity of the synthesized carbon at 25°C and a relatively high pressure of 9.5 bar was 9.57 mmolg−1. Based on the thermodynamic and kinetic models, it was clarified that the adsorption process can be regarded as physisorption with an adsorption enthalpy of 23.2 kJ.mol−1. Additionally, the fractional-order kinetic model was found to be the best match in the kinetic curves. The synthesis system described herein represents a promising strategy for producing green porous carbon from various waste organic precursors.


2020 ◽  
Vol 1 (1) ◽  
pp. 20-33 ◽  
Author(s):  
Eliyahu M. Farber ◽  
Kasinath Ojha ◽  
Tomer Y. Burshtein ◽  
Lihi Hasson ◽  
David Eisenberg

Hierarchical porosity in carbon materials can be realized by self-templating: controlled pyrolysis of well-designed metal–organic precursors.


2019 ◽  
Vol 33 (11) ◽  
pp. 11454-11464 ◽  
Author(s):  
Lin Hong ◽  
Shunlong Ju ◽  
Xiaoyun Liu ◽  
Qixin Zhuang ◽  
Guozhu Zhan ◽  
...  
Keyword(s):  

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 264 ◽  
Author(s):  
Kulandaivel Sivasankar ◽  
Souvik Pal ◽  
Murugan Thiruppathi ◽  
Chia-Her Lin

Nitrogen-doped porous carbon (NPC) materials were successfully synthesized via a Zn-containing metal-organic framework (Zn-MOF). The resulting NPC materials are characterized using various physicochemical techniques which indicated that the NPC materials obtained at different carbonization temperatures exhibited different properties. Pristine MOF morphology and pore size are retained after carbonization at particular temperatures (600 °C-NPC600 and 800 °C-NPC800). NPC800 material shows an excellent surface area 1192 m2/g, total pore volume 0.92 cm3/g and displays a higher CO2 uptake 4.71 mmol/g at 273 k and 1 bar. Furthermore, NPC600 material displays good electrochemical sensing towards H2O2. Under optimized conditions, our sensor exhibited a wide linearity range between 100 µM and 10 mM with a detection limit of 27.5 µM.


2020 ◽  
Author(s):  
Yamin Zhang ◽  
Zhongpu Wang ◽  
Deping Li ◽  
Qing Sun ◽  
Kangrong Lai ◽  
...  

<p></p><p>Porous carbon has attracted extensive attentions as the electrode material for various energy storage devices considering its advantages like high theoretical capacitance/capacity, high conductivity, low cost and earth abundant inherence. However, there still exists some disadvantages limiting its further applications, such as the tedious fabrication process, limited metal-ion transport kinetics and undesired structure deformation at harsh electrochemical conditions. Herein, we report a facile strategy, with calcium gluconate firstly reported as the carbon source, to fabricate ultrathin porous carbon nanosheets. <a>The as-prepared Ca-900 electrode delivers excellent K-ion storage performance including high reversible capacity (430.7 mAh g<sup>-1</sup>), superior rate capability (154.8 mAh g<sup>-1</sup> at an ultrahigh current density of 5.0 A g<sup>-1</sup>) and ultra-stable long-term cycling stability (a high capacity retention ratio of ~81.2% after 4000 cycles at 1.0 A g<sup>-1</sup>). </a>Similarly, when being applied in Zn-ion capacitors, the Ca-900 electrode also exhibits an ultra-stable cycling performance with ~90.9% capacity retention after 4000 cycles at 1.0 A g<sup>-1</sup>, illuminating the applicable potentials. Moreover, the origin of the fast and smooth metal-ion storage is also revealed by carefully designed consecutive CV measurements. Overall, considering the facile preparation strategy, unique structure, application flexibility and in-depth mechanism investigations, this work will deepen the fundamental understandings and boost the commercialization of high-efficient energy storage devices like potassium-ion/sodium-ion batteries, zinc-ion batteries/capacitors and aluminum-ion batteries.</p><br><p></p>


Sign in / Sign up

Export Citation Format

Share Document