Microwave Desorption Mechanism and Microwave Effect based on SO2 Chemical Dissociation and Mass Transfer of Basic Aluminium Sulfate Desulfurization Rich Liquid

Author(s):  
Zijing Zhang ◽  
Junna Wang ◽  
Yu Feng ◽  
Weiwei Zhang ◽  
Shuangji Zuo ◽  
...  

A microwave liquid-phase desorption technique for enhancing mass transfer with chemical dissociation had been proposed for the first time. In this paper, the static desorption system of basic aluminium sulfate...

2014 ◽  
Vol 955-959 ◽  
pp. 2388-2391
Author(s):  
Shi Ying Yang ◽  
Lin Yu Feng ◽  
Mei Qing Huo ◽  
Yan Li

Peroxymonosulfate (PMS) was used in wet scrubbing removal of odorous gas methyl mercaptan (CH3SH) under acidic condition (pH = 2) for the first time. Even though CH3SH can hardly dissociate as CH3S− under acidic solution (pKa = 10.3), quick oxidizing reaction may occur at the gas-liquid interface by PMS alone or Co2+ activated PMS oxidation. When the gas flow is 0.5 L min-1, PMS alone can remove 94% of 60 ppm/v CH3SH. The absorption of CH3SH is the rate controlling step of the removal process, however, quick oxidizing reaction with the dissolved CH3SH(aq) molecule could improve the mass transfer of CH3SH from the gas phase into the liquid phase.


1999 ◽  
Vol 39 (4) ◽  
pp. 85-92 ◽  
Author(s):  
J. Behrendt

A mathematical model for nitrification in an aerated fixed bed reactor has been developed. This model is based on material balances in the bulk liquid, gas phase and in the biofilm area. The fixed bed is divided into a number of cells according to the reduced remixing behaviour. A fixed bed cell consists of 4 compartments: the support, the gas phase, the bulk liquid phase and the stagnant volume containing the biofilm. In the stagnant volume the biological transmutation of the ammonia is located. The transport phenomena are modelled with mass transfer formulations so that the balances could be formulated as an initial value problem. The results of the simulation and experiments are compared.


Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
J. Barry Greenberg ◽  
David Katoshevski

A theoretical investigation of the influence of a standing wave flow-field on the dynamics of a laminar two-dimensional spray diffusion flame is presented for the first time. The mathematical analysis permits mild slip between the droplets and their host surroundings. For the liquid phase, the use of a small Stokes number as the perturbation parameater enables a solution of the governing equations to be developed. Influence of the standing wave flow-field on droplet grouping is described by a specially constructed modification of the vaporization Damkohler number. Instantaneous flame front shapes are found via a solution for the usual Schwab–Zeldovitch parameter. Numerical results obtained from the analytical solution uncover the strong bearing that droplet grouping, induced by the standing wave flow-field, can have on flame height, shape, and type (over- or under-ventilated) and on the existence of multiple flame fronts.


1979 ◽  
Vol 37 (6) ◽  
pp. 1389-1393
Author(s):  
A. N. Verigin ◽  
I. A. Shchuplyak ◽  
M. F. Mikhalev ◽  
V. V. Varentsov

2021 ◽  
Vol 3 (102) ◽  
pp. 55-67
Author(s):  
VARVARA E. RUMYANTSEVA ◽  
SVETLANA A. LOGINOVA ◽  
NATALIA E. KARTSEVA

In the aquatic environment, biocorrosion is an important factor affecting the reliability and durability of concrete structures. The destruction of cement concretes during biological corrosion is determined by the processes of mass transfer. The article presents the development of a calculated mathematical model of liquid corrosion in cement concrete, taking into account the biogenic factor. For the first time, a model of mass transfer in an unbounded two-layer plate is considered in the form of differential equations of parabolic type in partial derivatives with boundary conditions of the second kind at the interface between concrete and liquid and of the fourth kind at the interface between concrete and biofilm. The results of a numerical experiment are presented to study the influence of the coefficients of mass conductivity and mass transfer on the kinetics and dynamics of the process.


Author(s):  
V.V. Shekhovtsov ◽  
◽  
YU.A. Abzaev ◽  
O.G. Volokitin ◽  
A.A. Klopotov ◽  
...  

The paper presents the results of numerical modeling of development melting zone hollow spherical microparticle α-Al2O3. The object of the study was part circular sector, which represents the shell of hollow particle, which is formed under action plasma flow. Numerically describe the unsteady convective heat and mass transfer in shell hollow particle, we used the system Navier-Stokes equations in Boussinesq approximation, which describes the weak convection medium. Due to the high coefficient of porosity (P = 0.56) initial agglomerated particle with the α-Al2O3 structure, the inner region at the stage of heating Tp ≥ Tmelt is in the conditions heat exchange with the incoming heat flux, as result of which the temperature center coincided with the temperature particle surface. Result of overheating of the condensed phase, liquid layer of fused grains is formed in the inner and outer regions microparticle. In this case, the melting front is directed towards center shell. Result of numerical modeling, it has been established that convective heat and mass transfer is observed in melting zones (liquid phase), vector field of which covers almost the entire region of the liquid phase. It was found that thermal convection in the external liquid phase is characterized by velocities that are more than 2 times higher than the displacement velocity in the inner region of the particle. It is shown that there is no displacement of the material inside the convection region, thereby inhomogeneous heating occurs in the molten layer of the particle, which significantly affects the speed of movement of the melting front.


1966 ◽  
Vol 21 (8) ◽  
pp. 719-721 ◽  
Author(s):  
P.H. Calderbank ◽  
R.P. Patra
Keyword(s):  

2018 ◽  
Vol 9 (2) ◽  
pp. 281-287 ◽  
Author(s):  
Nicholas S. Gould ◽  
Bingjun Xu

Due to the low volatility and highly oxygenated nature of biomass derived feedstocks, biomass upgrade reactions are frequently conducted in the presence of solvent to improve substrate mass transfer to the catalyst surface.


Sign in / Sign up

Export Citation Format

Share Document