Hyaluronic acid-based hydrogels to study cancer cell behaviors

Author(s):  
Kasra Goodarzi ◽  
Shreyas Rao

Hyaluronic acid (HA) is a natural polysaccharide and a key component of the extracellular matrix (ECM) in many tissues. Therefore, HA-based biomaterials are extensively utilized to create three dimensional ECM...

Author(s):  
Yuta Takagi ◽  
Toshihiko Shiraishi ◽  
Shin Morishita ◽  
Ryohei Takeuchi ◽  
Tomoyuki Saito ◽  
...  

This paper describes the effects of vibration stimulation on chondrocytes in three-dimensional culture in relation to the production of regenerative cartilage tissue, using collagen artificial skin as a carrier and supplementation with hyaluronic acid (used in the conservative treatment of osteoarthritis), and the mechanism of the adaptive response of chondrocytes to mechanical loading. The experimental condition imitates an environment of articular cartilage in vivo that chondrocytes are completely surrounded by the extracellular matrix and receives mechanical stimulation for the weight-bearing mechanics. Chondrocytes were isolated from articular cartilage of porcine metatarsophalangeal joints. Experiments were performed under four different culture conditions: control condition, in which chondrocytes were cultured with atelocollagen gel and collagen artificial skins, and no vibration (HA−Vib−); HA−Vib+, in which chondrocytes were cultured in atelocollagen gel and collagen artificial skins with vibration treatment for 2 weeks; HA+Vib−, in which chondrocytes were cultured in medium containing 0.1% hyaluronic acid; and HA+Vib+, in which chondrocytes were cultured in medium containing 0.1% hyaluronic acid with vibration treatment for 2 weeks. Histologic analysis was conducted at 14 days of culture. The proliferation of chondrocytes was obtained by counting the number of cells with a hemocytometer after 3, 7, 10, and 14 days of culture. The expression of Sox 9 and β-catenin was detected by western blotting analysis. Sox 9 has been reported of involvement in transcription of type IX collagen that binds cartilage-specific type II collagen fibrils. β-catenin plays an important role of signaling pathways of cell proliferation although the relationship between β-catenin and mechanical vibration stimulation has not been clarified yet. The obtained results are as follows. The mechanical vibration enhanced the thickness of extracellular matrix of chondrocytes in histologic section at 14 days of culture and increased the expression of Sox 9. In addition, the mechanical vibration significantly increased the number of chondrocytes after 10 days of culture and promoted the expression of β-catenin. These results show that mechanical vibration promotes the matrix production and proliferation of chondrocytes and that a part of important signaling pathways in relation to mechanical vibration stimulation and proliferation of chondrocytes has been revealed.


Gels ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 17
Author(s):  
Xabier Morales ◽  
Iván Cortés-Domínguez ◽  
Carlos Ortiz-de-Solorzano

Understanding how cancer cells migrate, and how this migration is affected by the mechanical and chemical composition of the extracellular matrix (ECM) is critical to investigate and possibly interfere with the metastatic process, which is responsible for most cancer-related deaths. In this article we review the state of the art about the use of hydrogel-based three-dimensional (3D) scaffolds as artificial platforms to model the mechanobiology of cancer cell migration. We start by briefly reviewing the concept and composition of the extracellular matrix (ECM) and the materials commonly used to recreate the cancerous ECM. Then we summarize the most relevant knowledge about the mechanobiology of cancer cell migration that has been obtained using 3D hydrogel scaffolds, and relate those discoveries to what has been observed in the clinical management of solid tumors. Finally, we review some recent methodological developments, specifically the use of novel bioprinting techniques and microfluidics to create realistic hydrogel-based models of the cancer ECM, and some of their applications in the context of the study of cancer cell migration.


2007 ◽  
Vol 35 (4) ◽  
pp. 665-668 ◽  
Author(s):  
P.A. Kenny

Three-dimensional extracellular matrix culture, on substrata such as Matrigel, restores many aspects of the differentiated state to non-malignant cells from a variety of tissues. We have adapted these techniques to study EGFR (epidermal growth factor receptor) signalling and drug response in breast cancer cell lines. EGFR-dependent breast cancer cell lines undergo a striking reversion of the malignant phenotype upon treatment with inhibitors targeting the receptor, or downstream signalling intermediates such as mitogen-activated protein kinase and PI3K (phosphoinositide 3-kinase). Using this approach, we have recently reported that EGFR signalling in breast cancer can be effectively inhibited by blocking the activity of a key protease, TACE [TNFα (tumour necrosis factor α)-converting enzyme], which regulates the bioavailability of EGFR ligands. These results suggest a new way to target EGFR signalling in tumours of the breast and other epithelial tissues and underline the value of three-dimensional extracellular matrix culture models for exploring cancer-relevant signalling processes ex vivo.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Massimo Alfano ◽  
Manuela Nebuloni ◽  
Raffaele Allevi ◽  
Pietro Zerbi ◽  
Erika Longhi ◽  
...  

2019 ◽  
Vol 5 (11) ◽  
pp. 5669-5680 ◽  
Author(s):  
Naoko Nakamura ◽  
Tsuyoshi Kimura ◽  
Kwangwoo Nam ◽  
Toshiya Fujisato ◽  
Hiroo Iwata ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1841
Author(s):  
Kang Li ◽  
Xuejie Zhang ◽  
Yan Qin ◽  
Ying Li

Aerogels have been widely used in the adsorption of pollutants because of their large specific surface area. As an environmentally friendly natural polysaccharide, cellulose is a good candidate for the preparation of aerogels due to its wide sources and abundant polar groups. In this paper, an approach to construct cellulose nanofibers aerogels with both the good mechanical property and the high pollutants adsorption capability through chemical crosslinking was explored. On this basis, TiO2 nanoparticles were loaded on the aerogel through the sol-gel method followed by the hydrothermal method, thereby the enriched pollutants in the aerogel could be degraded synchronously. The chemical cross-linker not only helps build the three-dimensional network structure of aerogels, but also provides loading sites for TiO2. The degradation efficiency of pollutants by the TiO2@CNF Aerogel can reach more than 90% after 4 h, and the efficiency is still more than 70% after five cycles. The prepared TiO2@CNF Aerogels have high potential in the field of environmental management, because of the high efficiency of treating organic pollutes and the sustainability of the materials. The work also provides a choice for the functional utilization of cellulose, offering a valuable method to utilize the large amount of cellulose in nature.


2021 ◽  
pp. 2000145
Author(s):  
Sreejith Raveendran ◽  
Anindito Sen ◽  
Toru Maekawa ◽  
D. Sakthi Kumar

Sign in / Sign up

Export Citation Format

Share Document