Field emission applications of graphene analogous two dimensional materials: Recent developments and future perspectives

Author(s):  
Abhinandan Patra ◽  
Mahendra A More ◽  
Dattatray J Late ◽  
Chandra Sekhar Rout

2D layered materials are widely regarded as the revolutionary class of materials and hold great promises in the modern device technology industries. 2D materials family covers almost the entire spectrum...

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Mei Zhao ◽  
Sijie Yang ◽  
Kenan Zhang ◽  
Lijie Zhang ◽  
Ping Chen ◽  
...  

AbstractNonlayered two-dimensional (2D) materials have attracted increasing attention, due to novel physical properties, unique surface structure, and high compatibility with microfabrication technique. However, owing to the inherent strong covalent bonds, the direct synthesis of 2D planar structure from nonlayered materials, especially for the realization of large-size ultrathin 2D nonlayered materials, is still a huge challenge. Here, a general atomic substitution conversion strategy is proposed to synthesize large-size, ultrathin nonlayered 2D materials. Taking nonlayered CdS as a typical example, large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method, where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method. The size and thickness of CdS flakes can be controlled by the CdI2 precursor. The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS, which has been evidenced by experiments and theoretical calculations. The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials, providing a bridge between layered and nonlayered materials, meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.


2017 ◽  
Vol 46 (17) ◽  
pp. 5400-5424 ◽  
Author(s):  
Jun Gao ◽  
Yaping Feng ◽  
Wei Guo ◽  
Lei Jiang

This review highlights the recent progress, current challenges, and future perspectives in the design and application of 2D layered materials for nanofluidic research, with emphasis on the thought of bio-inspiration.


2021 ◽  
Vol 2109 (1) ◽  
pp. 012012
Author(s):  
Cuicui Sun ◽  
Meili Qi

Abstract Since the discovery of graphene, two-dimensional (2D) layered materials have always been the focus of material research. The layers of 2D materials are covalent bonds, and the layers are weakly bonded to adjacent layers through van der Waals (vdW) interactions. Since any dangling-bond-free surface could be combined with another material through vdW forces, the concept can be extended. This can refer to the integration of 2D materials with any other non-2D materials through non-covalent interactions. The emerging mixed-dimensional (2D+nD, where n is 0, 1 or 3) heterostructure devices has been studied and represents a wider range of vdW heterostructures. New electronic devices and optoelectronic devices based on such heterojunctions have unique functions. Therefore, this article depicts the research progress of (2D+nD, where n is 0, 1 or 3) vdW heterojunctions based on 2D materials.


2022 ◽  
Author(s):  
Sithara Radhakrishnan ◽  
Minu Mathew ◽  
Chandra Sekhar Rout

There has been an exponential increase in the number of studies of two-dimensional (2D) layered materials for sensing applications since the isolation of graphene in 2004. These materials serve as...


2018 ◽  
Vol 47 (9) ◽  
pp. 3037-3058 ◽  
Author(s):  
Daniel S. Schulman ◽  
Andrew J. Arnold ◽  
Saptarshi Das

Over the past decade, the field of two-dimensional (2D) layered materials has surged, promising a new platform for studying diverse physical phenomena that are scientifically intriguing and technologically relevant.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ming Xia

Two-dimensional (2D) materials, such as graphene and MoS2, have been attracting wide interest in surface enhancement Raman spectroscopy. This perspective gives an overview of recent developments in 2D materials’ application in surface-enhanced Raman spectroscopy. This review paper focuses on the applications of using bare 2D materials and metal/2D material hybrid substrate for Raman enhancement. The Raman enhancing mechanism of 2D materials will also be discussed. The progress covered herein shows great promise for widespread adoption of 2D materials in SERS application.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yiran Ding ◽  
Mengqi Zeng ◽  
Qijing Zheng ◽  
Jiaqian Zhang ◽  
Ding Xu ◽  
...  

AbstractInterlayer spacing is expected to influence the properties of multilayer two-dimensional (2D) materials. However, the ability to non-destructively regulate the interlayer spacing bidirectionally and reversibly is challenging. Here we report the preparation of 2D materials with tunable interlayer spacing by introducing active sites (Ce ions) in 2D materials to capture and immobilize Pt single atoms. The strong chemical interaction between active sites and Pt atoms contributes to the intercalation behavior of Pt atoms in the interlayer of 2D materials and further promotes the formation of chemical bonding between Pt atom and host materials. Taking cerium-embedded molybdenum disulfide (MoS2) as an example, intercalation of Pt atoms enables interlayer distance tuning via an electrochemical protocol, leading to interlayer spacing reversible and linear compression and expansion from 6.546 ± 0.039 Å to 5.792 ± 0.038 Å (~11 %). The electronic property evolution with the interlayer spacing variation is demonstrated by the photoluminescence (PL) spectra, delivering that the well-defined barrier between the multilayer and monolayer layered materials can be artificially designed.


Author(s):  
Bhuvaneshwari Ezhilmaran ◽  
Abhinandan Patra ◽  
Stenny Benny ◽  
Sreelakshmi M R ◽  
Akshay V V ◽  
...  

In recent years, 2D layered materials have emerged as potential candidate in the opto-electronic field due to their intriguing optical, electrical and mechanical properties. Photodetectors based on 2D materials are...


2021 ◽  
pp. 2140002
Author(s):  
MIRIAM C. RODRÍGUEZ GONZÁLEZ ◽  
RAHUL SASIKUMAR ◽  
STEVEN DE FEYTER

In this paper, we give an overview of different chemical modifications that can be done on the surface of two-dimensional (2D) layered materials. We place emphasis on the diversity of reactions that have been proposed and are now available to surface scientists working in 2D materials field. Using mainly, but not exclusively, MoS2 as example, reactions involving covalent and non-covalent interactions are discussed.


Author(s):  
Minu Mathew ◽  
Chandra Sekhar Rout

This review details the fundamentals, working principles and recent developments of Schottky junctions based on 2D materials to emphasize their improved gas sensing properties including low working temperature, high sensitivity, and selectivity.


Sign in / Sign up

Export Citation Format

Share Document