scholarly journals Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yiran Ding ◽  
Mengqi Zeng ◽  
Qijing Zheng ◽  
Jiaqian Zhang ◽  
Ding Xu ◽  
...  

AbstractInterlayer spacing is expected to influence the properties of multilayer two-dimensional (2D) materials. However, the ability to non-destructively regulate the interlayer spacing bidirectionally and reversibly is challenging. Here we report the preparation of 2D materials with tunable interlayer spacing by introducing active sites (Ce ions) in 2D materials to capture and immobilize Pt single atoms. The strong chemical interaction between active sites and Pt atoms contributes to the intercalation behavior of Pt atoms in the interlayer of 2D materials and further promotes the formation of chemical bonding between Pt atom and host materials. Taking cerium-embedded molybdenum disulfide (MoS2) as an example, intercalation of Pt atoms enables interlayer distance tuning via an electrochemical protocol, leading to interlayer spacing reversible and linear compression and expansion from 6.546 ± 0.039 Å to 5.792 ± 0.038 Å (~11 %). The electronic property evolution with the interlayer spacing variation is demonstrated by the photoluminescence (PL) spectra, delivering that the well-defined barrier between the multilayer and monolayer layered materials can be artificially designed.

Author(s):  
Abhinandan Patra ◽  
Mahendra A More ◽  
Dattatray J Late ◽  
Chandra Sekhar Rout

2D layered materials are widely regarded as the revolutionary class of materials and hold great promises in the modern device technology industries. 2D materials family covers almost the entire spectrum...


Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2315-2340 ◽  
Author(s):  
Junli Wang ◽  
Xiaoli Wang ◽  
Jingjing Lei ◽  
Mengyuan Ma ◽  
Cong Wang ◽  
...  

AbstractDue to the unique properties of two-dimensional (2D) materials, much attention has been paid to the exploration and application of 2D materials. In this review, we focus on the application of 2D materials in mode-locked fiber lasers. We summarize the synthesis methods for 2D materials, fiber integration with 2D materials and 2D materials based saturable absorbers. We discuss the performance of the diverse mode-locked fiber lasers in the typical operating wavelength such as 1, 1.5, 2 and 3 μm. Finally, a summary and outlook of the further applications of the new materials in mode-locked fiber lasers are presented.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Mei Zhao ◽  
Sijie Yang ◽  
Kenan Zhang ◽  
Lijie Zhang ◽  
Ping Chen ◽  
...  

AbstractNonlayered two-dimensional (2D) materials have attracted increasing attention, due to novel physical properties, unique surface structure, and high compatibility with microfabrication technique. However, owing to the inherent strong covalent bonds, the direct synthesis of 2D planar structure from nonlayered materials, especially for the realization of large-size ultrathin 2D nonlayered materials, is still a huge challenge. Here, a general atomic substitution conversion strategy is proposed to synthesize large-size, ultrathin nonlayered 2D materials. Taking nonlayered CdS as a typical example, large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method, where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method. The size and thickness of CdS flakes can be controlled by the CdI2 precursor. The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS, which has been evidenced by experiments and theoretical calculations. The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials, providing a bridge between layered and nonlayered materials, meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.


Author(s):  
Adam Brill ◽  
Elad Koren ◽  
Graham de Ruiter

Atomically thin two-dimensional materials (2DMs) have moved in the past 15 years from a serendipitously isolated single-layered graphene curiosity to a near technological renaissance, where 2DMs such as graphene and...


CCS Chemistry ◽  
2019 ◽  
pp. 117-127 ◽  
Author(s):  
Mengqi Zeng ◽  
Yunxu Chen ◽  
Enze Zhang ◽  
Jiaxu Li ◽  
Rafael G. Mendes ◽  
...  

Currently, most two-dimensional (2D) materials that are of interest to emergent applications have focused on van der Waals–layered materials (VLMs) because of the ease with which the layers can be separated (e.g., graphene). Strong interlayer-bonding-layered materials (SLMs) in general have not been thoroughly explored, and one of the most critical present issues is the huge challenge of their preparation, although their physicochemical property transformation should be richer than VLMs and deserves greater attention. MAX phases are a classical kind of SLM. However, limited to the strong interlayer bonding, their corresponding 2D counterparts have never been obtained, nor has there been investigation of their fundamental properties in the 2D limitation. Here, the authors develop a controllable bottom-up synthesis strategy for obtaining 2D SLMs single crystal through the design of a molecular scaffold with Mo 2GaC, which is a typical kind of MAX phase, as an example. The superconducting transitions of Mo 2GaC at the 2D limit are clearly inherited from the bulk, which is consistent with Berezinskii–Kosterlitz–Thouless behavior. The authors believe that their molecular scaffold strategy will allow the fabrication of other high-quality 2D SLMs single crystals, which will further expand the family of 2D materials and promote their future application.


Author(s):  
Bohayra Mortazavi ◽  
Masoud Shahrokhi ◽  
Xiaoying Zhuang ◽  
Alexander V. Shapeev ◽  
Timon Rabczuk

In the latest experimental advances in the field of two-dimensional (2D) materials, penta-PdPS and penta-PdPSe layered materials have been fabricated. In this work, we conduct first-principles calculations to explore the...


2021 ◽  
Vol 8 (1) ◽  
pp. 182-200
Author(s):  
Yanglizhi Li ◽  
Luzhao Sun ◽  
Haiyang Liu ◽  
Yuechen Wang ◽  
Zhongfan Liu

Recent advances on preparing single-crystal metals and their crucial roles in controlled growth of high-quality 2D materials are reviewed.


2020 ◽  
Vol 22 (39) ◽  
pp. 22140-22156
Author(s):  
Xin-Ping Zhai ◽  
Bo Ma ◽  
Qiang Wang ◽  
Hao-Li Zhang

Two-dimensional materials are now excelling in yet another arena of ultrafast photonics, including optical modulation through optical limiting/mode-locking, photodetectors, optical communications, integrated miniaturized all-optical devices, etc.


2020 ◽  
Vol 233 ◽  
pp. 03005
Author(s):  
Jaime E. Santos ◽  
Mikhail Vasilevskiy ◽  
Nuno M.R. Peres ◽  
Antti-Pekka Jauho

We consider the problem of the radiation losses by fast-traveling particles traversing two-dimensional (2d) materials or thin films. After review¬ing the screening of electromagnetic fields by two dimensional conducting ma¬terials, we obtain the energy loss by a fast particle traversing such a material or film. In particular, we discuss the pattern of radiation emitted by monolayer graphene treated within a hydrodynamic approximation. These results are com¬pared with recent published results using similar approximations and, having in mind a potential application to particle detection, we briefly discuss how one can improve on the signals obtained by using other two-dimensional materials.


Nanoscale ◽  
2018 ◽  
Vol 10 (26) ◽  
pp. 12349-12355 ◽  
Author(s):  
Ngoc Huynh Van ◽  
Manoharan Muruganathan ◽  
Jothiramalingam Kulothungan ◽  
Hiroshi Mizuta

An all-2D materials three-terminal subthermal subthreshold slope nanoelectromechanical (NEM) switch is realized to overcome the exponential increase in leakage current with an increase in the drive current of CMOS devices.


Sign in / Sign up

Export Citation Format

Share Document