Contact engineering for 2D materials and devices

2018 ◽  
Vol 47 (9) ◽  
pp. 3037-3058 ◽  
Author(s):  
Daniel S. Schulman ◽  
Andrew J. Arnold ◽  
Saptarshi Das

Over the past decade, the field of two-dimensional (2D) layered materials has surged, promising a new platform for studying diverse physical phenomena that are scientifically intriguing and technologically relevant.

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Haihua HUANG ◽  
Xiaofeng FAN

Thermoelectric technologies have caught our intense attention due to their ability of heat conversion into electricity. The considerable efforts have been taken to develop and enhance thermoelectric properties of materials over the past several decades. Recently, two-dimensional layered materials are making the promise for potential applications of thermoelectric devices because of the excellent physical and structural properties. Here, a comprehensive coverage about recent progresses in thermoelectric properties of typical two dimensional (2D) layered materials, including the theoretical and experimental results, is provided. Moreover, the potential applications of 2D thermoelectric materials are also involved. These results indicate that the development of 2D thermoelectric materials take a key role in the flexible electronic devices with thermoelectric technologies.


Author(s):  
Abhinandan Patra ◽  
Mahendra A More ◽  
Dattatray J Late ◽  
Chandra Sekhar Rout

2D layered materials are widely regarded as the revolutionary class of materials and hold great promises in the modern device technology industries. 2D materials family covers almost the entire spectrum...


2021 ◽  
pp. 2140002
Author(s):  
MIRIAM C. RODRÍGUEZ GONZÁLEZ ◽  
RAHUL SASIKUMAR ◽  
STEVEN DE FEYTER

In this paper, we give an overview of different chemical modifications that can be done on the surface of two-dimensional (2D) layered materials. We place emphasis on the diversity of reactions that have been proposed and are now available to surface scientists working in 2D materials field. Using mainly, but not exclusively, MoS2 as example, reactions involving covalent and non-covalent interactions are discussed.


RSC Advances ◽  
2017 ◽  
Vol 7 (28) ◽  
pp. 17387-17397 ◽  
Author(s):  
Zhongcheng Zhu ◽  
Imran Murtaza ◽  
Hong Meng ◽  
Wei Huang

During the past few years, two-dimensional (2D) layered materials have emerged as the most fundamental building blocks of a wide variety of optoelectronic devices.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Mei Zhao ◽  
Sijie Yang ◽  
Kenan Zhang ◽  
Lijie Zhang ◽  
Ping Chen ◽  
...  

AbstractNonlayered two-dimensional (2D) materials have attracted increasing attention, due to novel physical properties, unique surface structure, and high compatibility with microfabrication technique. However, owing to the inherent strong covalent bonds, the direct synthesis of 2D planar structure from nonlayered materials, especially for the realization of large-size ultrathin 2D nonlayered materials, is still a huge challenge. Here, a general atomic substitution conversion strategy is proposed to synthesize large-size, ultrathin nonlayered 2D materials. Taking nonlayered CdS as a typical example, large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method, where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method. The size and thickness of CdS flakes can be controlled by the CdI2 precursor. The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS, which has been evidenced by experiments and theoretical calculations. The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials, providing a bridge between layered and nonlayered materials, meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.


Author(s):  
Adam Brill ◽  
Elad Koren ◽  
Graham de Ruiter

Atomically thin two-dimensional materials (2DMs) have moved in the past 15 years from a serendipitously isolated single-layered graphene curiosity to a near technological renaissance, where 2DMs such as graphene and...


CCS Chemistry ◽  
2019 ◽  
pp. 117-127 ◽  
Author(s):  
Mengqi Zeng ◽  
Yunxu Chen ◽  
Enze Zhang ◽  
Jiaxu Li ◽  
Rafael G. Mendes ◽  
...  

Currently, most two-dimensional (2D) materials that are of interest to emergent applications have focused on van der Waals–layered materials (VLMs) because of the ease with which the layers can be separated (e.g., graphene). Strong interlayer-bonding-layered materials (SLMs) in general have not been thoroughly explored, and one of the most critical present issues is the huge challenge of their preparation, although their physicochemical property transformation should be richer than VLMs and deserves greater attention. MAX phases are a classical kind of SLM. However, limited to the strong interlayer bonding, their corresponding 2D counterparts have never been obtained, nor has there been investigation of their fundamental properties in the 2D limitation. Here, the authors develop a controllable bottom-up synthesis strategy for obtaining 2D SLMs single crystal through the design of a molecular scaffold with Mo 2GaC, which is a typical kind of MAX phase, as an example. The superconducting transitions of Mo 2GaC at the 2D limit are clearly inherited from the bulk, which is consistent with Berezinskii–Kosterlitz–Thouless behavior. The authors believe that their molecular scaffold strategy will allow the fabrication of other high-quality 2D SLMs single crystals, which will further expand the family of 2D materials and promote their future application.


Author(s):  
Bohayra Mortazavi ◽  
Masoud Shahrokhi ◽  
Xiaoying Zhuang ◽  
Alexander V. Shapeev ◽  
Timon Rabczuk

In the latest experimental advances in the field of two-dimensional (2D) materials, penta-PdPS and penta-PdPSe layered materials have been fabricated. In this work, we conduct first-principles calculations to explore the...


2022 ◽  
Author(s):  
Manareldeen Ahmed ◽  
Yan Li ◽  
Wenchao Chen ◽  
Erping Li

Abstract This paper investigates the diffusion barrier performance of 2D layered materials with pre-existing vacancy defects using first-principles density functional theory. Vacancy defects in 2D materials may give rise to a large amount of Cu accumulation, and consequently, the defect becomes a diffusion path for Cu. Five 2D layered structures are investigated as diffusion barriers for Cu, i.e., graphene with C vacancy, hBN with B/N vacancy, and MoS2 with Mo/2S vacancy. The calculated energy barriers using climbing image - nudged elastic band show that MoS2-V2S has the highest diffusion energy barrier among other 2D layers, followed by hBN-VN and graphene. The obtained energy barrier of Cu on defected layer is found to be proportional to the length of the diffusion path. Moreover, the diffusion of Cu through vacancy defects is found to modulate the electronic structures and magnetic properties of the 2D layer. The charge density difference shows that there exists a considerable charge transfer between Cu and barrier layer as quantified by Bader charge. Given the current need for an ultra-thin diffusion barrier layer, the obtained results contribute to the field of application of 2D materials as Cu diffusion barrier in the presence of mono-vacancy defects.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3437-3452
Author(s):  
Rui Chen ◽  
Jinhua Cao ◽  
Stephen Gee ◽  
Yin Liu ◽  
Jie Yao

AbstractTwo-dimensional (2D) layered materials hosting dislocations have attracted considerable research attention in recent years. In particular, screw dislocations can result in a spiral topology and an interlayer twist in the layered materials, significantly impacting the stacking order and symmetry of the layers. Moreover, the dislocations with large strain and heavily distorted atomic registry can result in a local modification of the structures around the dislocation. The dislocations thus provide a useful route to engineering optical, electrical, thermal, mechanical and catalytic properties of the 2D layered materials, which show great potential to bring new functionalities. This article presents a comprehensive review of the experimental and theoretical progress on the growth and properties of the dislocated 2D layered materials. It also offers an outlook on the future works in this promising research field.


Sign in / Sign up

Export Citation Format

Share Document