scholarly journals Microfluidic sensors based on two-dimensional materials for chemical and biological assessments

2022 ◽  
Author(s):  
Sithara Radhakrishnan ◽  
Minu Mathew ◽  
Chandra Sekhar Rout

There has been an exponential increase in the number of studies of two-dimensional (2D) layered materials for sensing applications since the isolation of graphene in 2004. These materials serve as...

Author(s):  
Abhinandan Patra ◽  
Mahendra A More ◽  
Dattatray J Late ◽  
Chandra Sekhar Rout

2D layered materials are widely regarded as the revolutionary class of materials and hold great promises in the modern device technology industries. 2D materials family covers almost the entire spectrum...


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Mei Zhao ◽  
Sijie Yang ◽  
Kenan Zhang ◽  
Lijie Zhang ◽  
Ping Chen ◽  
...  

AbstractNonlayered two-dimensional (2D) materials have attracted increasing attention, due to novel physical properties, unique surface structure, and high compatibility with microfabrication technique. However, owing to the inherent strong covalent bonds, the direct synthesis of 2D planar structure from nonlayered materials, especially for the realization of large-size ultrathin 2D nonlayered materials, is still a huge challenge. Here, a general atomic substitution conversion strategy is proposed to synthesize large-size, ultrathin nonlayered 2D materials. Taking nonlayered CdS as a typical example, large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method, where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method. The size and thickness of CdS flakes can be controlled by the CdI2 precursor. The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS, which has been evidenced by experiments and theoretical calculations. The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials, providing a bridge between layered and nonlayered materials, meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.


Nanoscale ◽  
2018 ◽  
Vol 10 (26) ◽  
pp. 12349-12355 ◽  
Author(s):  
Ngoc Huynh Van ◽  
Manoharan Muruganathan ◽  
Jothiramalingam Kulothungan ◽  
Hiroshi Mizuta

An all-2D materials three-terminal subthermal subthreshold slope nanoelectromechanical (NEM) switch is realized to overcome the exponential increase in leakage current with an increase in the drive current of CMOS devices.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3437-3452
Author(s):  
Rui Chen ◽  
Jinhua Cao ◽  
Stephen Gee ◽  
Yin Liu ◽  
Jie Yao

AbstractTwo-dimensional (2D) layered materials hosting dislocations have attracted considerable research attention in recent years. In particular, screw dislocations can result in a spiral topology and an interlayer twist in the layered materials, significantly impacting the stacking order and symmetry of the layers. Moreover, the dislocations with large strain and heavily distorted atomic registry can result in a local modification of the structures around the dislocation. The dislocations thus provide a useful route to engineering optical, electrical, thermal, mechanical and catalytic properties of the 2D layered materials, which show great potential to bring new functionalities. This article presents a comprehensive review of the experimental and theoretical progress on the growth and properties of the dislocated 2D layered materials. It also offers an outlook on the future works in this promising research field.


NANO ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. 1850138
Author(s):  
Seungwook Son ◽  
Dongwook Kim ◽  
Sutassana Na-Phattalung ◽  
Jisoon Ihm

Two-dimensional (2D) or layered materials have a great potential for applications in energy storage, catalysis, optoelectronics and gas separation. Fabricating novel 2D or quasi-2D layered materials composed of relatively abundant and inexpensive atomic species is an important issue for practical usage in industry. Here, we suggest the layer-structured AlOOH (Boehmite) as a promising candidate for such applications. Boehmite is a well-known layer-structured material and a single-layer can be exfoliated from the bulk boehmite by breaking the interlayer hydrogen bonding. We study atomic and electronic band structures of both bulk and single-layer boehmite, and also obtain the single-layer exfoliation energy using first-principles calculations.


Nanoscale ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 1245-1255 ◽  
Author(s):  
M. G. Donato ◽  
E. Messina ◽  
A. Foti ◽  
T. J. Smart ◽  
P. H. Jones ◽  
...  

Optical forces are used for trapping, characterization, and positioning of layered materials (hBN, MoS2, and WS2) obtained by liquid phase exfoliation.


Author(s):  
Manoj K. Jana ◽  
C. N. R. Rao

The discovery of graphene marks a major event in the physics and chemistry of materials. The amazing properties of this two-dimensional (2D) material have prompted research on other 2D layered materials, of which layered transition metal dichalcogenides (TMDCs) are important members. Single-layer and few-layer TMDCs have been synthesized and characterized. They possess a wide range of properties many of which have not been known hitherto. A typical example of such materials is MoS 2 . In this article, we briefly present various aspects of layered analogues of graphene as exemplified by TMDCs. The discussion includes not only synthesis and characterization, but also various properties and phenomena exhibited by the TMDCs. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Haihua HUANG ◽  
Xiaofeng FAN

Thermoelectric technologies have caught our intense attention due to their ability of heat conversion into electricity. The considerable efforts have been taken to develop and enhance thermoelectric properties of materials over the past several decades. Recently, two-dimensional layered materials are making the promise for potential applications of thermoelectric devices because of the excellent physical and structural properties. Here, a comprehensive coverage about recent progresses in thermoelectric properties of typical two dimensional (2D) layered materials, including the theoretical and experimental results, is provided. Moreover, the potential applications of 2D thermoelectric materials are also involved. These results indicate that the development of 2D thermoelectric materials take a key role in the flexible electronic devices with thermoelectric technologies.


2019 ◽  
Vol 1 (7) ◽  
pp. 2606-2611 ◽  
Author(s):  
Xuan-Ze Li ◽  
Yi-Fan Wang ◽  
Jing Xia ◽  
Xiang-Min Meng

Vertical heterostructures based on two-dimensional (2D) layered materials are ideal platforms for electronic structure engineering and novel device applications.


Author(s):  
Chih-Pin Lin ◽  
Hao-Hua Hsu ◽  
Jyun-Hong Huang ◽  
Yu-Wei Kang ◽  
Chien-Ting Wu ◽  
...  

The lack of effective synthesis techniques for achieving wafer-scale uniformity and high crystallinity remains one of the major obstacles for two-dimensional (2D) layered materials in practical applications. 2D solid-phase crystallization...


Sign in / Sign up

Export Citation Format

Share Document