Mixed-metal fluoride hydrates and their thermal-decomposition products: an investigation by X-ray, Mössbauer, and thermal analysis

Author(s):  
Kevin J. Gallagher ◽  
Martyn R. Ottaway
Author(s):  
Konstantin G. Gorbovskiy ◽  
Alena S. Ryzhova ◽  
Andrey M. Norov ◽  
Denis A. Pagaleshkin ◽  
Valentina N. Kalinina ◽  
...  

Complex mineral ammonium nitrate-based fertilizers are complex multicomponent salt systems possessing low thermal stability and prone to self-sustaining decomposition. This leads to the need to increase the requirements for fire and explosion safety in their manufacture, storage and transportation, caused by the fact that ammonium nitrate is a solid oxidant able to support a combustion, and its heating in confined space can lead to detonation. Components that make up such fertilizers can both reduce (phosphates and ammonium sulfate) and accelerate (chlorine compounds) decomposition of ammonium nitrate. Thus, the thermal stability of fertilizers based on ammonium nitrate largely depends on the ratio of the components that make up its composition or formed as a result of the chemical reaction. The simplest way to reduce the content of ammonium nitrate and increase the thermal stability of fertilizer without changing the content of essential nutrients is to increase the degree of phosphoric acid ammoniation. In this paper, the phase composition change of grade 22:11:11 nitrogen-phosphorus-potassium fertilizer obtained with different ammoniation degree in the process of thermal decomposition was studied by X-ray phase analysis. To obtain this fertilizer, wet-process phosphoric acid obtained sulfuric acid attack of the Khibin apatite concentrate by a hemihydrate method is used. It is shown that an increase in the ammoniation degree has a significant effect on the exothermic decomposition of ammonium nitrate and the amount of material that is released into the gas phase. The phases formed at each stage of the decomposition are determined.Forcitation:Gorbovskiy K.G., Ryzhova A.S., Norov A.M., Pagaleshkin D.A., Kalinina V.N., Mikhaylichenko A.I. Study of thermal decomposition products of nitrogen-phosphorus-potassium fertilizers based on ammonium nitrate by X-ray diffractuon. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 1. P. 72-77


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3272
Author(s):  
Polina S. Serebrennikova ◽  
Vladislav Y. Komarov ◽  
Aleksandr S. Sukhikh ◽  
Svetlana P. Khranenko ◽  
Andrey V. Zadesenets ◽  
...  

The co-crystallisation of [NiEn3](NO3)2 (En = ethylenediamine) with Na2MoO4 and Na2WO4 from a water solution results in the formation of [NiEn3](MoO4)0.5(WO4)0.5 co-crystals. According to the X-ray diffraction analysis of eight single crystals, the parameters of the hexagonal unit cell (space group P–31c, Z = 2) vary in the following intervals: a = 9.2332(3)–9.2566(6); c = 9.9512(12)–9.9753(7) Å with the Mo/W ratio changing from 0.513(3)/0.487(3) to 0.078(4)/0.895(9). The thermal decomposition of [NiEn3](MoO4)0.5(WO4)0.5 individual crystals obtained by co-crystallisation was performed in He and H2 atmospheres. The ex situ X-ray study of thermal decomposition products shows the formation of nanocrystalline refractory alloys and carbide composites containing ternary Ni–Mo–W phases. The formation of carbon–nitride phases at certain stages of heating up to 1000 °C were shown.


2011 ◽  
Vol 66 (3) ◽  
pp. 230-238 ◽  
Author(s):  
Bodo Böhme ◽  
Stefan Hoffmann ◽  
Michael Baitinger ◽  
Yuri Grin

The thermal decomposition products of ionic liquids based on n-dodecyltrimethylammonium chloride (DTAC) were used for the preparation of the metastable allotrope Ge(cF136) by oxidation of Na12Ge17 in gas-solid reactions. This method of preparation provides a promising low-temperature route for the synthesis of intermetallic phases and elemental modifications. In order to explore the reaction mechanism, we investigated the thermal decomposition of DTAC as well as of the ionic liquids DTAC/MgCl2 and DTAC/AlCl3 by in-situ mass spectrometry and by powder X-ray diffraction. The results have revealed HCl, CH3Cl and 1-chlorododecane to act as oxidizing agents in the gas-solid redox reactions.


2014 ◽  
Vol 13 (04) ◽  
pp. 1450022 ◽  
Author(s):  
Zerong Daniel Wang ◽  
Meagan Hysmith ◽  
Perla Cristina Quintana

The formation of carbon disulfide ( CS 2) and ammonia ( NH 3) from the thermal decomposition products of thiourea has been studied with MP2, and hybrid module-based density functional theory methods (B3LYP, MPW1PW91 and PBE1PBE), each in conjunction with five different basis sets (6-31+G(2d,2p), 6-311++G(2d,2p), DGDZVP, DGDZVP2 and DGTZVP). The free energy changes and activation energies for all the five primitive reactions involved in the formation of CS 2 and NH 3 have been compared and discussed. The results indicate that CS 2 is most likely formed in a consecutive reaction path that consists of the addition of hydrogen sulfide ( H 2 S ) to isothiocyanic acid (HNCS) to generate carbamodithioic acid and subsequent decomposition of carbamodithioic acid. By contrast, thiocyanic acid (HSCN) as the structural isomer of isothiocyanic acid is not likely the source of CS 2.


Sign in / Sign up

Export Citation Format

Share Document