Dynamics calculations and isotopic effect in O + OH(D)? O2+ H(D) at low energies

1994 ◽  
Vol 90 (15) ◽  
pp. 2189 ◽  
Author(s):  
Jorge M. C. Marques ◽  
Wenli Wang ◽  
Ant�nio J. C. Varandas
Keyword(s):  
Author(s):  
X. Zhang ◽  
J. Spence ◽  
W. Qian ◽  
D. Taylor ◽  
K. Taylor

Experimental point-projection shadow microscope (PPM) images of uncoated, unstained purple membrane (PM, bacteriorhodopsin, a membrane protein from Halobacterium holobium) were obtained recently using 100 volt electrons. The membrane thickness is about 5 nm and the hexagonal unit cell dimension 6 nm. The images show contrast around the edges of small holes, as shown in figure 1. The interior of the film is opaque. Since the inelastic mean free path for 100V electrons in carbon (about 6 Å) is much less than the sample thickness, the question arises that how much, if any, transmission of elastically scattered electrons occurs. A large inelastic contribution is also expected, attenuated by the reduced detection efficiency of the channel plate at low energies. Quantitative experiments using an energy-loss spectrometer are planned. Recently Shedd has shown that at about 100V contrast in PPM images of thin gold films can be explained as Fresnel interference effects between different pinholes in the film, separated by less than the coherence width.


1991 ◽  
Vol 223 ◽  
Author(s):  
Hans P. Zappe ◽  
Gudrun Kaufel

ABSTRACTThe effect of numerous plasma reative ion etch and physical milling processes on the electrical behavior of GaAs bulk substrates has been investigated by means of electric microwave absorption. It was seen that plasma treatments at quite low energies may significantly affect the electrical quality of the etched semiconductor. Predominantly physical plasma etchants (Ar) were seen to create significant damage at very low energies. Chemical processes (involving Cl or F), while somewhat less pernicious, also gave rise to electrical substrate damage, the effect greater for hydrogenic ambients. Whereas rapid thermal anneal treatments tend to worsen the electrical integrity, some substrates respond positively to long-time high temperature anneal steps.


2004 ◽  
Vol 22 (8) ◽  
pp. 3063-3072 ◽  
Author(s):  
U. W. Langner ◽  
M. S. Potgieter

Abstract. The interest in the role of the solar wind termination shock and heliosheath in cosmic ray modulation studies has increased significantly as the Voyager 1 and 2 spacecraft approach the estimated position of the solar wind termination shock. The effect of the solar wind termination shock on charge-sign dependent modulation, as is experienced by galactic cosmic ray Helium (He++) and anomalous Helium (He+), is the main topic of this work, and is complementary to the previous work on protons, anti-protons, electrons, and positrons. The modulation of galactic and anomalous Helium is studied with a numerical model including a more fundamental and comprehensive set of diffusion coefficients, a solar wind termination shock with diffusive shock acceleration, a heliosheath and particle drifts. The model allows a comparison of modulation with and without a solar wind termination shock and is applicable to a number of cosmic ray species during both magnetic polarity cycles of the Sun. The modulation of Helium, including an anomalous component, is also done to establish charge-sign dependence at low energies. We found that the heliosheath is important for cosmic ray modulation and that its effect on modulation is very similar for protons and Helium. The local Helium interstellar spectrum may not be known at energies


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
H. Amekura ◽  
M. Toulemonde ◽  
K. Narumi ◽  
R. Li ◽  
A. Chiba ◽  
...  

AbstractDamaged regions of cylindrical shapes called ion tracks, typically in nano-meters wide and tens micro-meters long, are formed along the ion trajectories in many insulators, when high energy ions in the electronic stopping regime are injected. In most cases, the ion tracks were assumed as consequences of dense electronic energy deposition from the high energy ions, except some cases where the synergy effect with the nuclear energy deposition plays an important role. In crystalline Si (c-Si), no tracks have been observed with any monomer ions up to GeV. Tracks are formed in c-Si under 40 MeV fullerene (C60) cluster ion irradiation, which provides much higher energy deposition than monomer ions. The track diameter decreases with decreasing the ion energy until they disappear at an extrapolated value of ~ 17 MeV. However, here we report the track formation of 10 nm in diameter under C60 ion irradiation of 6 MeV, i.e., much lower than the extrapolated threshold. The diameters of 10 nm were comparable to those under 40 MeV C60 irradiation. Furthermore, the tracks formed by 6 MeV C60 irradiation consisted of damaged crystalline, while those formed by 40 MeV C60 irradiation were amorphous. The track formation was observed down to 1 MeV and probably lower with decreasing the track diameters. The track lengths were much shorter than those expected from the drop of Se below the threshold. These track formations at such low energies cannot be explained by the conventional purely electronic energy deposition mechanism, indicating another origin, e.g., the synergy effect between the electronic and nuclear energy depositions, or dual transitions of transient melting and boiling.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Emilian M. Nica ◽  
Qimiao Si

AbstractRecent experiments in multiband Fe-based and heavy-fermion superconductors have challenged the long-held dichotomy between simple s- and d-wave spin-singlet pairing states. Here, we advance several time-reversal-invariant irreducible pairings that go beyond the standard singlet functions through a matrix structure in the band/orbital space, and elucidate their naturalness in multiband systems. We consider the sτ3 multiorbital superconducting state for Fe-chalcogenide superconductors. This state, corresponding to a d + d intra- and inter-band pairing, is shown to contrast with the more familiar d + id state in a way analogous to how the B- triplet pairing phase of 3He superfluid differs from its A- phase counterpart. In addition, we construct an analog of the sτ3 pairing for the heavy-fermion superconductor CeCu2Si2, using degrees-of-freedom that incorporate spin-orbit coupling. Our results lead to the proposition that d-wave superconductors in correlated multiband systems will generically have a fully-gapped Fermi surface when they are examined at sufficiently low energies.


2001 ◽  
Vol 15 (03) ◽  
pp. 105-109
Author(s):  
M. S. HUSSEIN

We derive a generalized Low equation for the T-matrix appropriate for complex atom–molecule interaction. The properties of this new equation at very low energies are studied and the complex scattering length and effective range are derived.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matthew J. Trott ◽  
Chris A. Hooley

AbstractThe transition metal dichalcogenides offer significant promise for the tunable realisation and application of correlated electronic phases. However, tuning their properties requires an understanding of the physical mechanisms underlying their experimentally observed ordered phases, and in particular the extent to which lattice vibrations are a necessary ingredient. Here we present a potential mechanism for charge-density-wave formation in monolayers of vanadium diselenide in which the key role at low energies is played by a combination of electron–electron interactions and nesting. There is a competition between superconducting and density-wave fluctuations as sections of the Fermi surface are tuned to perfect nesting. This competition leads to charge-density-wave order when the effective Heisenberg exchange interaction is comparable to the effective Coulomb repulsion. When all effective interactions are purely repulsive, it results instead in d-wave superconductivity. We discuss the possible role of lattice vibrations in enhancing the effective Heisenberg exchange during the earlier stages of the renormalisation group flow.


Sign in / Sign up

Export Citation Format

Share Document