scholarly journals Characterization of tolloid-mediated cleavage of the GDF8 procomplex

2021 ◽  
Author(s):  
Jason C McCoy ◽  
Erich J Goebel ◽  
Thomas B Thompson

Growth differentiation factor 8 (GDF8), a.k.a. myostatin, is a member of the larger TGFβ superfamily of signaling ligands. GDF8 has been well characterized as a negative regulator of muscle mass. After synthesis, GDF8 is held latent by a noncovalent complex between the N-terminal prodomain and the signaling ligand. Activation of latent GDF8 requires proteolytic cleavage of the prodomain at residue D99 by a member of the tolloid family of metalloproteases. While tolloid proteases cleave multiple substrates, they lack a conserved consensus sequence. Here we investigate the tolloid cleavage site of the GDF8 prodomain to determine what residues contribute to tolloid recognition and subsequent proteolysis. Using sequential alanine mutations, we identified several residues adjacent to the scissile bond, including Y94, that when mutated, abolish tolloid-mediated activation of latent GDF8. Using the astacin domain of Tll1 (Tolloid Like 1) we determined that prodomain mutants were more resistant to proteolysis. Purified latent complexes harboring the prodomain mutations, D92A and Y94A, impeded activation by tolloid but could be fully activated under acidic conditions. Finally, we show that co-expression of GDF8 WT with prodomain mutants that were tolloid resistant, suppressed GDF8 activity. Taken together our data demonstrate that residues towards the N-terminus of the scissile bond are important for tolloid-mediated activation of GDF8 and that tolloid-resistant version of the GDF8 prodomain can function dominant negative to WT GDF8.

2002 ◽  
Vol 277 (42) ◽  
pp. 40163-40166
Author(s):  
Susanne Schneider ◽  
Hans-Rudolf Hotz ◽  
Beate Schwer

Genetics ◽  
1998 ◽  
Vol 150 (1) ◽  
pp. 119-128
Author(s):  
M Rhys Dow ◽  
Paul E Mains

Abstract We have previously described the gene mei-1, which encodes an essential component of the Caenorhabditis elegans meiotic spindle. When ectopically expressed after the completion of meiosis, mei-1 protein disrupts the function of the mitotic cleavage spindles. In this article, we describe the cloning and the further genetic characterization of mel-26, a postmeiotic negative regulator of mei-1. mel-26 was originally identified by a gain-of-function mutation. We have reverted this mutation to a loss-of-function allele, which has recessive phenotypes identical to the dominant defects of its gain-of-function parent. Both the dominant and recessive mutations of mel-26 result in mei-1 protein ectopically localized in mitotic spindles and centrosomes, leading to small and misoriented cleavage spindles. The loss-of-function mutation was used to clone mel-26 by transformation rescue. As suggested by genetic results indicating that mel-26 is required only maternally, mel-26 mRNA was expressed predominantly in the female germline. The gene encodes a protein that includes the BTB motif, which is thought to play a role in protein-protein interactions.


Structure ◽  
2013 ◽  
Vol 21 (11) ◽  
pp. 2014-2024 ◽  
Author(s):  
Luca Raiola ◽  
Mathieu Lussier-Price ◽  
David Gagnon ◽  
Julien Lafrance-Vanasse ◽  
Xavier Mascle ◽  
...  

1998 ◽  
Vol 11 (5) ◽  
pp. 429-433 ◽  
Author(s):  
B. Schrammeijer ◽  
J. Hemelaar ◽  
P. J. J. Hooykaas

Octopine and nopaline strains of Agrobacterium tumefaciens differ in their ability to induce tumors on Nicotiana glauca. The presence of a virF locus on the octopine Ti plasmid makes N. glauca a host plant for these strains, indicating that the VirF protein is a host-range determinant. Here we show the presence of a virF locus not only on the Agrobacterium vitis octopine/cucumopine plasmids pTiAg57 and pTiTm4, but also on the nopaline Ti plas-mids pTiAT1, pTiAT66a, and pTiAT66b. On the octopine Ti plasmids from A. tumefaciens the virF gene is located between the virE locus and the left border of the T-region. In contrast, the virF gene on Ti plasmids of A. vitis is located at the very left end of the vir-region near the virA locus. The virF gene of pTiAg57 has been sequenced and codes for a protein of 202 amino acids with a molecular mass of 22,280 Da. Comparison showed that the virF gene from A. vitis strain Ag57 is almost identical to that from A. tumefaciens octopine strains. The transcription of the pTiAg57 virF is inducible by the plant phenolic compound acetosyringone through the presence of a vir-box consensus sequence in its promoter region. The VirF protein from pTiAg57 can complement octopine A. tumefaciens strains deleted for virF as shown by tumor formation on N. glauca.


1989 ◽  
Vol 9 (11) ◽  
pp. 5073-5080 ◽  
Author(s):  
M Kozak

The context requirements for recognition of an initiator codon were evaluated in vitro by monitoring the relative use of two AUG codons that were strategically positioned to produce long (pre-chloramphenicol acetyl transferase [CAT]) and short versions of CAT protein. The yield of pre-CAT initiated from the 5'-proximal AUG codon increased, and synthesis of CAT from the second AUG codon decreased, as sequences flanking the first AUG codon increasingly resembled the eucaryotic consensus sequence. Thus, under prescribed conditions, the fidelity of initiation in extracts from animal as well as plant cells closely mimics what has been observed in vivo. Unexpectedly, recognition of an AUG codon in a suboptimal context was higher when the adjacent downstream sequence was capable of assuming a hairpin structure than when the downstream region was unstructured. This finding adds a new, positive dimension to regulation by mRNA secondary structure, which has been recognized previously as a negative regulator of initiation. Translation of pre-CAT from an AUG codon in a weak context was not preferentially inhibited under conditions of mRNA competition. That result is consistent with the scanning model, which predicts that recognition of the AUG codon is a late event that occurs after the competition-sensitive binding of a 40S ribosome-factor complex to the 5' end of mRNA. Initiation at non-AUG codons was evaluated in vitro and in vivo by introducing appropriate mutations in the CAT and preproinsulin genes. GUG was the most efficient of the six alternative initiator codons tested, but GUG in the optimal context for initiation functioned only 3 to 5% as efficiently as AUG. Initiation at non-AUG codons was artifactually enhanced in vitro at supraoptimal concentrations of magnesium.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Abdul Azeez ◽  
Yiru Chen Zhao ◽  
Rajesh Kumar Singh ◽  
Yordan S. Yordanov ◽  
Madhumita Dash ◽  
...  

AbstractBud-break is an economically and environmentally important process in trees and shrubs from boreal and temperate latitudes, but its molecular mechanisms are poorly understood. Here, we show that two previously reported transcription factors, EARLY BUD BREAK 1 (EBB1) and SHORT VEGETATIVE PHASE-Like (SVL) directly interact to control bud-break. EBB1 is a positive regulator of bud-break, whereas SVL is a negative regulator of bud-break. EBB1 directly and negatively regulates SVL expression. We further report the identification and characterization of the EBB3 gene. EBB3 is a temperature-responsive, epigenetically-regulated, positive regulator of bud-break that provides a direct link to activation of the cell cycle during bud-break. EBB3 is an AP2/ERF transcription factor that positively and directly regulates CYCLIND3.1 gene. Our results reveal the architecture of a putative regulatory module that links temperature-mediated control of bud-break with activation of cell cycle.


1993 ◽  
Vol 13 (5) ◽  
pp. 3002-3014
Author(s):  
K Kudrycki ◽  
C Stein-Izsak ◽  
C Behn ◽  
M Grillo ◽  
R Akeson ◽  
...  

We report characterization of several domains within the 5' flanking region of the olfactory marker protein (OMP) gene that may participate in regulating transcription of this and other olfactory neuron-specific genes. Analysis by electrophoretic mobility shift assay and DNase I footprinting identifies two regions that contain a novel sequence motif. Interactions between this motif and nuclear proteins were detected only with nuclear protein extracts derived from olfactory neuroepithelium, and this activity is more abundant in olfactory epithelium enriched in immature neurons. We have designated a factor(s) involved in this binding as Olf-1. The Olf-1-binding motif consensus sequence was defined as TCCCC(A/T)NGGAG. Studies with transgenic mice indicate that a 0.3-kb fragment of the OMP gene containing one Olf-1 motif is sufficient for olfactory tissue-specific expression of the reporter gene. Some of the other identified sequence motifs also interact specifically with olfactory nuclear protein extracts. We propose that Olf-1 is a novel, olfactory neuron-specific trans-acting factor involved in the cell-specific expression of OMP.


1974 ◽  
Vol 143 (2) ◽  
pp. 379-389 ◽  
Author(s):  
Lars-Åke Fransson ◽  
Lars Cöster ◽  
Birgitta Havsmark ◽  
Anders Malmström ◽  
Ingrid Sjöberg

Dermatan sulphate was degraded by testicular hyaluronidase and an oversulphated fraction was isolated by ion-exchange chromatography. This preparation, which contained fairly long segments derived from the non-reducing terminal portion of the molecule, was subjected to periodate oxidation under acidic conditions. The oxidized iduronic acid residues were cleaved by reduction-hydrolysis (Smith-degradation) (Fransson & Carlstedt, 1974) or by alkaline elimination. The oligosaccharides so obtained contained both GlcUA (glucuronic acid) and IdUA-SO4 (sulphated iduronic acid) residues. Copolymeric oligosaccharides obtained after alkaline elimination were cleaved by chondroitinase-AC into disaccharide and higher oligosaccharides. Since the corresponding oligosaccharides obtained by Smith-degradation were unaffected by this enzyme, it was concluded that the carbohydrate sequences were GalNAc-(IdUA-GalNAc)n-GlcUA-GalNAc. The iduronic acid-containing sequences were resistant to digestion with chondroitinase-ABC. It was demonstrated that the presence of unsulphated N-acetylgalactosamine residues in these sequences could be responsible for the observed effect. This information was obtained in an indirect way. Chemically desulphated dermatan sulphate was found to be a poor substrate for the chondroitinase-ABC enzyme. Moreover, digestion with chondroitinase-ABC of chondroitinase-AC-degraded dermatan sulphate released periodate-resistant iduronic acid-containing oligosaccharides. It is concluded that copolymeric sequences of the following structure are present in pig skin dermatan sulphate: [Formula: see text] N-acetylgalactosamine moieties surrounding IdUA-SO4 residues are unsulphated to a large extent.


2019 ◽  
Author(s):  
Sonia Balyan ◽  
Sombir Rao ◽  
Sarita Jha ◽  
Chandni Bansal ◽  
Jaishri Rubina Das ◽  
...  

AbstractThe footprint of tomato cultivation, a cool region crop that exhibits heat stress (HS) sensitivity, is increasing in the tropics/sub-tropics. Knowledge of novel regulatory hot-spots from varieties growing in the Indian sub-continent climatic zones could be vital for developing HS-resilient crops. Comparative transcriptome-wide signatures of a tolerant (CLN1621L) and sensitive (CA4) cultivar-pair short-listed from a pool of varieties exhibiting variable thermo-sensitivity using physiological, survival and yield-related traits revealed redundant to cultivar-specific HS-regulation with more up-regulated genes for CLN1621L than CA4. The anatgonisiticly-expressing genes include enzymes; have roles in plant defense and response to different abiotic stresses. Functional characterization of three antagonistic genes by overexpression and TRV-VIGS silencing established Solyc09g014280 (Acylsugar acyltransferase) and Solyc07g056570 (Notabilis), that are up-regulated in tolerant cultivar, as positive regulators of HS-tolerance and Solyc03g020030 (Pin-II proteinase inhibitor), that is down-regulated in CLN1621L, as negative regulator of thermotolerance. Transcriptional assessment of promoters of these genes by SNPs in stress-responsive cis-elements and promoter swapping experiments in opposite cultivar background showed inherent cultivar-specific orchestration of transcription factors in regulating transcription. Moreover, overexpression of three ethylene response transcription factors (ERF.C1/F4/F5) also improved HS-tolerance in tomato. This study identifies several novel HS-tolerance genes and provides proof of their utility in tomato-thermotolerance.HighlightNovel heat stress regulatory pathways uncovered by comparative transcriptome profiling between contrasting tomato cultivars from Indian sub-continent for improving thermotolerance. (20/30)


Sign in / Sign up

Export Citation Format

Share Document