scholarly journals Evaluation of the effects of phosphorylation of synthetic peptide substrates on their cleavage by caspase-3 and -7

2021 ◽  
Author(s):  
Izabela Maluch ◽  
Justyna Grzymska ◽  
Scott Snipas ◽  
Guy S Salvesen ◽  
Marcin Drag

Caspases are a family of enzymes that play roles in cell death and inflammation. It has been suggested that in the execution phase of the apoptotic pathway, caspase-3, -6 and -7 are involved. The substrate specificities of two proteases (caspases 3 and 7) are highly similar, which complicates the design of compounds that selectively interact with a single enzyme exclusively. The recognition of residues other than Asp in the P1 position of the substrate by caspase-3/-7 has been reported, promoting interest in the effects of phosphorylation of amino acids in the direct vicinity of the scissile bond. To evaluate conflicting reports on this subject, we synthesized a series of known caspase-3 and -7 substrates and phosphorylated analogs, performed enzyme kinetic assays and mapped the peptide cleavage sites using internally quenched fluorescence peptide substrates. Caspases 3 and 7 will tolerate pSer at the P1 position but only poorly at the P2’ position.  Our investigation demonstrates the importance of peptide length and composition in interpreting sequence/activity relationships. Based on the results, we conclude that the relationship between caspase-3/-7 and their substrates containing phosphorylated amino acids might depend on the steric conditions and not be directly connected with ionic interactions. Thus, the precise effect of phospho-amino acid residues located in the vicinity of the cleaved bond on the regulation of the substrate specificity of caspases remains difficult to predict. Our observations allow to predict that natural phosphorylated proteins may be cleaved by caspases, but only when extended substrate binding site interactions are satisfied.

2009 ◽  
Vol 390 (2) ◽  
pp. 99-107 ◽  
Author(s):  
Maria E. Stensland ◽  
Sylvie Pollmann ◽  
Øyvind Molberg ◽  
Ludvig M. Sollid ◽  
Burkhard Fleckenstein

Abstract Enzymes of the peptidylarginine deiminase (PAD) family catalyze the posttranslational deimination of polypeptide-bound arginine residues. Here, we report the selection of peptide substrates by PAD-4, an isoform thought to be involved in the pathogenesis of rheumatoid arthritis. First, we investigated whether PAD-4-mediated deimination is influenced by the nature of amino acid residues flanking the targeted arginine. Using two peptide substrates, residues in positions -2, -1, +1, and +2 relative to the central arginine targeted by PAD-4 were systematically replaced by all natural l-amino acids except cysteine. Each peptide was treated with recombinant human PAD-4 and deimination was analyzed by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. In all four flanking positions, amino acids which positively or negatively influenced deimination were identified. We next designed peptides with expected high or low deimination rates and determined their Km and kcat values. These peptides showed PAD-4 substrate behavior as predicted, demonstrating that residues flanking the targeted arginine are important for deimination. Further truncation of peptide substrates suggested additional effects on deimination by residues outside the -2 to +2 region. Finally, we observed that a methylated lysine residue flanking the targeted arginine influences PAD-4-mediated deimination, also suggesting that posttranslational modifications can affect substrate efficiency.


2000 ◽  
Vol 350 (2) ◽  
pp. 563-568 ◽  
Author(s):  
Henning R. STENNICKE ◽  
Martin RENATUS ◽  
Morten MELDAL ◽  
Guy S. SALVESEN

Subsite interactions are considered to define the stringent specificity of proteases for their natural substrates. To probe this issue in the proteolytic pathways leading to apoptosis we have examined the P4, P1 and P1´ subsite preferences of human caspases 1, 3, 6, 7 and 8, using internally quenched fluorescent peptide substrates containing o-aminobenzoyl (also known as anthranilic acid) and 3-nitro-tyrosine. Previous work has demonstrated the importance of the S4 subsite in directing specificity within the caspase family. Here we demonstrate the influence of the S1 and S1´ subsites that flank the scissile peptide bond. The S1 subsite, the major specificity-determining site of the caspases, demonstrates tremendous selectivity, with a 20000-fold preference for cleaving substrates containing aspartic acid over glutamic acid at this position. Thus caspases are among the most selective of known endopeptidases. We find that the caspases show an unexpected degree of discrimination in the P1´ position, with a general preference for small amino acid residues such as alanine, glycine and serine, with glycine being the preferred substituent. Large aromatic residues are also surprisingly well-tolerated, but charged residues are prohibited. While this describes the general order of P1´ subsite preferences within the caspase family, there are some differences in individual profiles, with caspase-3 being particularly promiscuous. Overall, the subsite preferences can be used to predict natural substrates, but in certain cases the cleavage site within a presumed natural substrate cannot be predicted by looking for the preferred peptide cleavage sites. In the latter case we conclude that second-site interactions may overcome otherwise sub-optimal cleavage sequences.


2019 ◽  
Vol 20 (7) ◽  
pp. 644-651 ◽  
Author(s):  
Changsong Gu ◽  
Xiangbing Mao ◽  
Daiwen Chen ◽  
Bing Yu ◽  
Qing Yang

Branched chain amino acids are the essential nutrients for humans and many animals. As functional amino acids, they play important roles in physiological functions, including immune functions. Isoleucine, as one of the branched chain amino acids, is also critical in physiological functions of the whole body, such as growth, immunity, protein metabolism, fatty acid metabolism and glucose transportation. Isoleucine can improve the immune system, including immune organs, cells and reactive substances. Recent studies have also shown that isoleucine may induce the expression of host defense peptides (i.e., β-defensins) that can regulate host innate and adaptive immunity. In addition, isoleucine administration can restore the effect of some pathogens on the health of humans and animals via increasing the expression of β-defensins. Therefore, the present review will emphatically discuss the effect of isoleucine on immunity while summarizing the relationship between branched chain amino acids and immune functions.


1980 ◽  
Vol 45 (2) ◽  
pp. 482-490 ◽  
Author(s):  
Jaroslav Vičar ◽  
François Piriou ◽  
Pierre Fromageot ◽  
Karel Bláha ◽  
Serge Fermandjian

The diastereoisomeric pairs of cyclodipeptides cis- and trans-cyclo(Ala-Ala), cyclo(Ala-Phe), cyclo(Val-Val) and cyclo(Leu-Leu) containing 85% 13C enriched amino-acid residues were synthesized and their 13C-13C coupling constants were measured. The combination of 13C-13C and 1H-1H coupling constants enabled to estimate unequivocally the side chain conformation of the valine and leucine residues.


2005 ◽  
Vol 79 (6) ◽  
pp. 3289-3296 ◽  
Author(s):  
Choong-Tat Keng ◽  
Aihua Zhang ◽  
Shuo Shen ◽  
Kuo-Ming Lip ◽  
Burtram C. Fielding ◽  
...  

ABSTRACT The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) interacts with cellular receptors to mediate membrane fusion, allowing viral entry into host cells; hence it is recognized as the primary target of neutralizing antibodies, and therefore knowledge of antigenic determinants that can elicit neutralizing antibodies could be beneficial for the development of a protective vaccine. Here, we expressed five different fragments of S, covering the entire ectodomain (amino acids 48 to 1192), as glutathione S-transferase fusion proteins in Escherichia coli and used the purified proteins to raise antibodies in rabbits. By Western blot analysis and immunoprecipitation experiments, we showed that all the antibodies are specific and highly sensitive to both the native and denatured forms of the full-length S protein expressed in virus-infected cells and transfected cells, respectively. Indirect immunofluorescence performed on fixed but unpermeabilized cells showed that these antibodies can recognize the mature form of S on the cell surface. All the antibodies were also able to detect the maturation of the 200-kDa form of S to the 210-kDa form by pulse-chase experiments. When the antibodies were tested for their ability to inhibit SARS-CoV propagation in Vero E6 culture, it was found that the anti-SΔ10 antibody, which was targeted to amino acid residues 1029 to 1192 of S, which include heptad repeat 2, has strong neutralizing activities, suggesting that this region of S carries neutralizing epitopes and is very important for virus entry into cells.


2008 ◽  
Vol 294 (3) ◽  
pp. F562-F570 ◽  
Author(s):  
Vani Nilakantan ◽  
Cheryl Maenpaa ◽  
Guangfu Jia ◽  
Richard J. Roman ◽  
Frank Park

20-HETE, a metabolite of arachidonic acid, has been implicated as a mediator of free radical formation and tissue death following ischemia-reperfusion (IR) injury in the brain and heart. The present study examined the role of this pathway in a simulated IR renal injury model in vitro. Modified self-inactivating lentiviral vectors were generated to stably overexpress murine Cyp4a12 following transduction into LLC-PK1 cells (LLC-Cyp4a12). We compared the survival of control and transduced LLC-PK1 cells following 4 h of ATP depletion and 2 h of recovery in serum-free medium. ATP depletion-recovery of LLC-Cyp4a12 cells resulted in a significantly higher LDH release ( P < 0.05) compared with LLC-enhanced green fluorescent protein (EGFP) cells. Treatment with the SOD mimetic MnTMPyP (100 μM) resulted in decreased cytotoxicity in LLC-Cyp4a12 cells. The selective 20-HETE inhibitor HET-0016 (10 μM) also inhibited cytotoxicity significantly ( P < 0.05) in LLC-Cyp4a12 cells. Dihydroethidium fluorescence showed that superoxide levels were increased to the same degree in LLC-EGFP and LLC-Cyp4a12 cells after ATP depletion-recovery compared with control cells and that this increase was inhibited by MnTMPyP. There was a significant increase ( P < 0.05) of caspase-3 cleavage, an effector protease of the apoptotic pathway, in the LLC-Cyp4a12 vs. LLC-EGFP cells ( P < 0.05). This was abolished in the presence of HET-0016 ( P < 0.05) or MnTMPyP ( P < 0.01). These results demonstrate that 20-HETE overexpression can significantly exacerbate the cellular damage that is associated with renal IR injury and that the programmed cell death is mediated by activation of caspase-3 and is partially dependent on enhanced CYP4A generation of free radicals.


1984 ◽  
Vol 38 (2) ◽  
pp. 177-179 ◽  
Author(s):  
B.S. Chauhan ◽  
N.C. Desai ◽  
Ramesh Bhatnagar ◽  
S.P. Garg

2014 ◽  
Vol 34 (9) ◽  
pp. 869-877 ◽  
Author(s):  
ES Son ◽  
SY Kyung ◽  
SP Lee ◽  
SH Jeong ◽  
JY Shin ◽  
...  

Cigarette smoke (CS) is a major risk factor for emphysema, which causes cell death in structural cells of the lung by mechanisms that are still not completely understood. We demonstrated previously that CS extract (CSE) induces caspase activation in MRC-5 human lung fibroblasts, activated protein kinase C-η (PKC-η), and translocated PKC-η from the cytosol to the membrane. The objective of this study was to investigate the involvement of PKC-η activation in a CSE-induced extrinsic apoptotic pathway. We determined that CSE increases expression of caspase 3 and 8 cleavage in MRC-5 cells and overexpression of PKC-η significantly increased expression of caspase 3 and 8 cleavage compared with control LacZ-infected cells. In contrast, dominant negative (dn) PKC-η inhibited apoptosis in MRC-5 cells exposed to CSE and decreased expression of caspase 3 and 8 compared with control cells. Exposure to 10% CSE for >8 h significantly increased lactate dehydrogenase release in PKC-η-infected cells compared with LacZ-infected cells. Additionally, PKC-η-infected cells had an increased number of Hoechst 33342 stained nuclei compared with LacZ-infected cells, while dn PKC-η-infected cells exhibited fewer morphological changes than LacZ-infected cells under phase-contrast microscopy. In conclusion, PKC-η activation plays a pro-apoptotic role in CSE-induced extrinsic apoptotic pathway in MRC-5 cells. These results suggest that modulation of PKC-η may be a useful tool for regulating the extrinsic apoptosis of MRC-5 cells by CSE and may have therapeutic potential in the treatment of CS-induced lung injury.


1995 ◽  
Vol 62 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Jai-Jun Choung ◽  
David G. Chamberlain

SummaryThe effects of the form in which amino acids are presented to the abomasum on the milk production of dairy cows receiving a basal diet of grass silage and a barley-based supplement were examined in two experiments. Effects of abomasal infusions of sodium caseinate were compared with the effects of corresponding levels of either an enzymic hydrolysate of casein (Expt 1) or a corresponding mixture of free amino acids (FAA; Expt 2). In Expt 1, although the yield of protein in milk increased progressively with each level of infusion, the yields of protein were greater for the caseinate than for the hydrolysate. Again, in Expt 2, for milk protein yield, sodium caseinate was superior to FAA at the lower level of infusion. In both experiments, the hydrolysate and FAA treatments were associated with higher concentrations of fat in the milk. There were indications of differences in the pattern of secretion of glucagon between the caseinate and FAA treatments. It is concluded that the differences between treatments relate either to the kinetics of absorption of amino acid residues or to the action of bioactive peptides released during digestion of casein.


Sign in / Sign up

Export Citation Format

Share Document