scholarly journals Real-time kinetic studies of Mycobacterium tuberculosis LexA-DNA interaction

2021 ◽  
Author(s):  
Chitral Chatterjee ◽  
Soneya Majumdar ◽  
Sachin Deshpande ◽  
Deepak Pant ◽  
Saravanan Matheshwaran

Transcriptional repressor, LexA, regulates the “SOS” response, an indispensable bacterial DNA damage repair machinery.  Compared to its E.coli ortholog, LexA from Mycobacterium tuberculosis (Mtb) possesses a unique N-terminal extension of additional 24 amino acids in its DNA binding domain (DBD) and 18 amino acids insertion at its hinge region that connects the DBD to the C-terminal dimerization/autoproteolysis domain. Despite the importance of LexA in “SOS” regulation, Mtb LexA remains poorly characterized and the functional importance of its additional amino acids remained elusive. In addition, the lack of data on kinetic parameters of Mtb LexA-DNA interaction prompted us to perform kinetic analyses of Mtb LexA and its deletion variants using Bio-layer Interferometry (BLI). Mtb LexA is seen to bind to different “SOS” boxes, DNA sequences present in the operator regions of damage-inducible genes, with comparable nanomolar affinity. Deletion of 18 amino acids from the linker region is found to affect DNA binding unlike the deletion of the N-terminal stretch of extra 24 amino acids. The conserved RKG motif has been found to be critical for DNA binding. Overall, this study provides insights into the kinetics of the interaction between Mtb LexA and its target “SOS” boxes. The kinetic parameters obtained for DNA binding of Mtb LexA would be instrumental to clearly understand the mechanism of “SOS” regulation and activation in Mtb.

2021 ◽  
Vol 41 (11) ◽  
Author(s):  
Chitral Chatterjee ◽  
Soneya Majumdar ◽  
Sachin Deshpande ◽  
Deepak Pant ◽  
Saravanan Matheshwaran

Abstract Transcriptional repressor, LexA, regulates the ‘SOS’ response, an indispensable bacterial DNA damage repair machinery. Compared with its Escherichia coli ortholog, LexA from Mycobacterium tuberculosis (Mtb) possesses a unique N-terminal extension of additional 24 amino acids in its DNA-binding domain (DBD) and 18 amino acids insertion at its hinge region that connects the DBD to the C-terminal dimerization/autoproteolysis domain. Despite the importance of LexA in ‘SOS’ regulation, Mtb LexA remains poorly characterized and the functional importance of its additional amino acids remained elusive. In addition, the lack of data on kinetic parameters of Mtb LexA–DNA interaction prompted us to perform kinetic analyses of Mtb LexA and its deletion variants using Bio-layer Interferometry (BLI). Mtb LexA is seen to bind to different ‘SOS’ boxes, DNA sequences present in the operator regions of damage-inducible genes, with comparable nanomolar affinity. Deletion of 18 amino acids from the linker region is found to affect DNA binding unlike the deletion of the N-terminal stretch of extra 24 amino acids. The conserved RKG motif has been found to be critical for DNA binding. Overall, the present study provides insights into the kinetics of the interaction between Mtb LexA and its target ‘SOS’ boxes. The kinetic parameters obtained for DNA binding of Mtb LexA would be instrumental to clearly understand the mechanism of ‘SOS’ regulation and activation in Mtb.


1989 ◽  
Vol 9 (6) ◽  
pp. 2464-2476
Author(s):  
M Cockell ◽  
B J Stevenson ◽  
M Strubin ◽  
O Hagenbüchle ◽  
P K Wellauer

Footprint analysis of the 5'-flanking regions of the alpha-amylase 2, elastase 2, and trypsina genes, which are expressed in the acinar pancreas, showed multiple sites of protein-DNA interaction for each gene. Competition experiments demonstrated that a region from each 5'-flanking region interacted with the same cell-specific DNA-binding activity. We show by in vitro binding assays that this DNA-binding activity also recognizes a sequence within the 5'-flanking regions of elastase 1, chymotrypsinogen B, carboxypeptidase A, and trypsind genes. Methylation interference and protection studies showed that the DNA-binding activity recognized a bipartite motif, the subelements of which were separated by integral helical turns of DNA. The alpha-amylase 2 cognate sequence was found to enhance in vivo transcription of its own promoter in a cell-specific manner, which identified the DNA-binding activity as a transcription factor (PTF 1). The observation that PTF 1 bound to DNA sequences that have been defined as transcriptional enhancers by others suggests that this factor is involved in the coordinate expression of genes transcribed in the acinar pancreas.


1984 ◽  
Vol 39 (9-10) ◽  
pp. 1017-1020 ◽  
Author(s):  
Ingrid Gilles ◽  
Hans-Gerd Löffler ◽  
Friedhelm Schneider

Abstract A new procedure for the isolation of highly purified acylamino acid amidohydrolase from hog kidney is d e­ scribed which allows the preparation of the enzyme with a recovery of about 45%, a 200 fold purification and a spec.activity of 350-500 U. The essential Zn2+ of the enzyme was exchanged for Co2+, Ni2+, Mn2+ and Cd2+, and the kinetic parameters KM, kcat and kcat/ KM of the different enzyme species for a series of acetyl-L-amino acids were determined.


1989 ◽  
Vol 9 (6) ◽  
pp. 2464-2476 ◽  
Author(s):  
M Cockell ◽  
B J Stevenson ◽  
M Strubin ◽  
O Hagenbüchle ◽  
P K Wellauer

Footprint analysis of the 5'-flanking regions of the alpha-amylase 2, elastase 2, and trypsina genes, which are expressed in the acinar pancreas, showed multiple sites of protein-DNA interaction for each gene. Competition experiments demonstrated that a region from each 5'-flanking region interacted with the same cell-specific DNA-binding activity. We show by in vitro binding assays that this DNA-binding activity also recognizes a sequence within the 5'-flanking regions of elastase 1, chymotrypsinogen B, carboxypeptidase A, and trypsind genes. Methylation interference and protection studies showed that the DNA-binding activity recognized a bipartite motif, the subelements of which were separated by integral helical turns of DNA. The alpha-amylase 2 cognate sequence was found to enhance in vivo transcription of its own promoter in a cell-specific manner, which identified the DNA-binding activity as a transcription factor (PTF 1). The observation that PTF 1 bound to DNA sequences that have been defined as transcriptional enhancers by others suggests that this factor is involved in the coordinate expression of genes transcribed in the acinar pancreas.


1995 ◽  
Vol 15 (5) ◽  
pp. 2858-2871 ◽  
Author(s):  
T Czerny ◽  
M Busslinger

Pax-6 is known to be a key regulator of vertebrate eye development. We have now isolated cDNA for an invertebrate Pax-6 protein from sea urchin embryos. Transcripts of this gene first appear during development at the gastrula stage and are later expressed at high levels in the tube foot of the adult sea urchin. The sea urchin Pax-6 protein is highly homologous throughout the whole protein to its vertebrate counterpart with the paired domain and homeodomain being virtually identical. Consequently, we found that the DNA-binding and transactivation properties of the sea urchin and mouse Pax-6 proteins are very similar, if not identical. A potent activation domain capable of stimulating transcription from proximal promoter and distal enhancer positions was localized within the C-terminal sequences of both the sea urchin and mouse Pax-6 proteins. The homeodomain of Pax-6 was shown to cooperatively dimerize on DNA sequences consisting of an inverted repeat of the TAAT motif with a preferred spacing of 3 nucleotides. The consensus recognition sequence of the Pax-6 paired domain deviates primarily only at one position from that of BSAP (Pax-5), and yet the two proteins exhibit largely different binding specificities for individual, naturally occurring sites. By creating Pax-6-BSAP fusion proteins, we were able to identify a short amino acid stretch in the N-terminal part of the paired domain which is responsible for these differences in DNA-binding specificity. Mutation of three Pax-6-specific residues in this region (at positions 42, 44, and 47 of the paired domain) to the corresponding amino acids of BSAP resulted in a complete switch of the DNA-binding specificity from Pax-6 to BSAP. These three amino acids were furthermore shown to discriminate between the Pax-6- and BSAP-specific nucleotide at the divergent position of the two consensus recognition sequences.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243905
Author(s):  
Paul B. Finn ◽  
Devesh Bhimsaria ◽  
Asfa Ali ◽  
Asuka Eguchi ◽  
Aseem Z. Ansari ◽  
...  

Pyrrole–imidazole (Py–Im) polyamides are synthetic molecules that can be rationally designed to target specific DNA sequences to both disrupt and recruit transcriptional machinery. While in vitro binding has been extensively studied, in vivo effects are often difficult to predict using current models of DNA binding. Determining the impact of genomic architecture and the local chromatin landscape on polyamide-DNA sequence specificity remains an unresolved question that impedes their effective deployment in vivo. In this report we identified polyamide–DNA interaction sites across the entire genome, by covalently crosslinking and capturing these events in the nuclei of human LNCaP cells. This technique confirms the ability of two eight ring hairpin-polyamides, with similar architectures but differing at a single ring position (Py to Im), to retain in vitro specificities and display distinct genome-wide binding profiles.


2020 ◽  
Author(s):  
Paul B. Finn ◽  
Devesh Bhimsaria ◽  
Asfa Ali ◽  
Asuka Eguchi ◽  
Aseem Z. Ansari ◽  
...  

ABSTRACTRegulating desired loci in the genome with sequence-specific DNA-binding molecules is a major goal for the development of precision medicine. Pyrrole–imidazole (Py–Im) polyamides are synthetic molecules that can be rationally designed to target specific DNA sequences to both disrupt and recruit transcriptional machinery. While in vitro binding has been extensively studied, in vivo effects are often difficult to predict using current models of DNA binding. Determining the impact of genomic architecture and the local chromatin landscape on polyamide-DNA sequence specificity remains an unresolved question that impedes their effective deployment in vivo. In this report we identified polyamide–DNA interaction sites across the entire genome, by covalently crosslinking and capturing these events in the nuclei of human LNCaP cells. This method, termed COSMIC-seq, confirms the ability of hairpin-polyamides, with similar architectures but differing at a single ring position, to retain in vitro specificities and display distinct genome-wide binding profiles. These results underpin the development of Py-Im polyamides as DNA-targeting molecules that mediate their regulatory or remedial functions at desired genomic loci.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Yan Li ◽  
Kyle W Muir ◽  
Matthew W Bowler ◽  
Jutta Metz ◽  
Christian H Haering ◽  
...  

The cohesin ring complex is required for numerous chromosomal transactions including sister chromatid cohesion, DNA damage repair and transcriptional regulation. How cohesin engages its chromatin substrate has remained an unresolved question. We show here, by determining a crystal structure of the budding yeast cohesin HEAT-repeat subunit Scc3 bound to a fragment of the Scc1 kleisin subunit and DNA, that Scc3 and Scc1 form a composite DNA interaction module. The Scc3-Scc1 subcomplex engages double-stranded DNA through a conserved, positively charged surface. We demonstrate that this conserved domain is required for DNA binding by Scc3-Scc1 in vitro, as well as for the enrichment of cohesin on chromosomes and for cell viability. These findings suggest that the Scc3-Scc1 DNA-binding interface plays a central role in the recruitment of cohesin complexes to chromosomes and therefore for cohesin to faithfully execute its functions during cell division.


Microbiology ◽  
2009 ◽  
Vol 155 (9) ◽  
pp. 2978-2987 ◽  
Author(s):  
Disha Awasthy ◽  
Sheshagiri Gaonkar ◽  
R. K. Shandil ◽  
Reena Yadav ◽  
Sowmya Bharath ◽  
...  

Acetohydroxyacid synthase (AHAS) is the first enzyme in the branched-chain amino acid biosynthesis pathway in bacteria. Bioinformatics analysis revealed that the Mycobacterium tuberculosis genome contains four genes (ilvB1, ilvB2, ilvG and ilvX) coding for the large catalytic subunit of AHAS, whereas only one gene (ilvN or ilvH) coding for the smaller regulatory subunit of this enzyme was found. In order to understand the physiological role of AHAS in survival of the organism in vitro and in vivo, we inactivated the ilvB1 gene of M. tuberculosis. The mutant strain was found to be auxotrophic for all of the three branched-chain amino acids (isoleucine, leucine and valine), when grown with either C6 or C2 carbon sources, suggesting that the ilvB1 gene product is the major AHAS in M. tuberculosis. Depletion of these branched chain amino acids in the medium led to loss of viability of the ΔilvB1 strain in vitro, resulting in a 4-log reduction in colony-forming units after 10 days. Survival kinetics of the mutant strain cultured in macrophages maintained with sub-optimal concentrations of the branched-chain amino acids did not show any loss of viability, indicating either that the intracellular environment was rich in these amino acids or that the other AHAS catalytic subunits were functional under these conditions. Furthermore, the growth kinetics of the ΔilvB1 strain in mice indicated that although this mutant strain showed defective growth in vivo, it could persist in the infected mice for a long time, and therefore could be a potential vaccine candidate.


1999 ◽  
Vol 181 (17) ◽  
pp. 5185-5192 ◽  
Author(s):  
Prasanna M. Bhende ◽  
Susan M. Egan

ABSTRACT RhaS, an AraC family protein, activates rhaBADtranscription by binding to rhaI, a site consisting of two 17-bp inverted repeat half-sites. In this work, amino acids in RhaS that make base-specific contacts with rhaI were identified. Sequence similarity with AraC suggested that the first contacting motif of RhaS was a helix-turn-helix. Assays of rhaB-lacZactivation by alanine mutants within this potential motif indicated that residues 201, 202, 205, and 206 might contact rhaI. The second motif was identified based on the hypothesis that a region of especially high amino acid similarity between RhaS and RhaR (another AraC family member) might contact the nearly identical DNA sequences in one major groove of their half-sites. We first made targeted, random mutations and then made alanine substitutions within this region of RhaS. Our analysis identified residues 247, 248, 250, 252, 253, and 254 as potentially important for DNA binding. A genetic loss-of-contact approach was used to identify whether any of the RhaS amino acids in the first or second contacting motif make base-specific DNA contacts. In motif 1, we found that Arg202 and Arg206 both make specific contacts with bp −65 and −67 in rhaI 1, and that Arg202 contacts −46 and Arg206 contacts −48 inrhaI 2. In motif 2, we found that Asp250 and Asn252 both contact the bp −79 in rhaI 1. Alignment with the recently crystallized MarA protein suggest that both RhaS motifs are likely helix-turn-helix DNA-binding motifs.


Sign in / Sign up

Export Citation Format

Share Document