scholarly journals The biosynthesis of squalene and sterols by the adipose tissue of rat, sheep and man

1966 ◽  
Vol 98 (1) ◽  
pp. 317-320 ◽  
Author(s):  
I F Durr

1. The subcutaneous and omental adipose tissue of man, the epididymal fat pads of the rat and the fat tail of the Syrian sheep incorporate mevalonic acid into non-saponifiable lipids. 2. Time studies showed that the rates of decarboxylation of mevalonic acid and synthesis of non-saponifiable lipids slightly decline after 20min. but subsequently remain linear for 6hr. 3. About one-half of the incorporated radioactivity in the non-saponifiable lipids was in squalene, 20% in lanosterol and cholesterol, and the remainder in unidentified substances.

2020 ◽  
Vol 477 (8) ◽  
pp. 1373-1389
Author(s):  
Nusrat Hussain ◽  
Sheng-Ju Chuang ◽  
Manuel Johanns ◽  
Didier Vertommen ◽  
Gregory R. Steinberg ◽  
...  

We investigated acute effects of two allosteric protein kinase B (PKB) inhibitors, MK-2206 and Akti-1/2, on insulin-stimulated lipogenesis in rat epididymal adipocytes incubated with fructose as carbohydrate substrate. In parallel, the phosphorylation state of lipogenic enzymes in adipocytes and incubated epididymal fat pads was monitored by immunoblotting. Preincubation of rat epididymal adipocytes with PKB inhibitors dose-dependently inhibited the following: insulin-stimulated lipogenesis, increased PKB Ser473 phosphorylation, increased PKB activity and decreased acetyl-CoA carboxylase (ACC) Ser79 phosphorylation. In contrast, the effect of insulin to decrease the phosphorylation of pyruvate dehydrogenase (PDH) at Ser293 and Ser300 was not abolished by PKB inhibition. Insulin treatment also induced ATP-citrate lyase (ACL) Ser454 phosphorylation, but this effect was less sensitive to PKB inhibitors than ACC dephosphorylation by insulin. In incubated rat epididymal fat pads, Akti-1/2 treatment reversed insulin-induced ACC dephosphorylation, while ACL phosphorylation by insulin was maintained. ACL and ACC purified from white adipose tissue were poor substrates for PKBα in vitro. However, effects of wortmannin and torin, along with Akti-1/2 and MK-2206, on recognized PKB target phosphorylation by insulin were similar to their effects on insulin-induced ACL phosphorylation, suggesting that PKB could be the physiological kinase for ACL phosphorylation by insulin. In incubated epididymal fat pads from wild-type versus ACC1/2 S79A/S212A knockin mice, effects of insulin to increase lipogenesis from radioactive fructose or from radioactive acetate were reduced but not abolished. Together, the results support a key role for PKB in mediating insulin-stimulated lipogenesis by decreasing ACC phosphorylation, but not by decreasing PDH phosphorylation.


1961 ◽  
Vol 201 (6) ◽  
pp. 1041-1043 ◽  
Author(s):  
J. M. Khanade ◽  
M. C. Nath

Lipogenesis and glucose uptake by epididymal fat pads of rats fed different diets have been investigated. Lipogenesis was found to be depressed in rats fed high fat, high fat and high protein, thyroid, thiouracil, and thiamine-deficient diets. The same dose of insulin causes varying degrees of lipogenesis in the tissues, depending on the type of diet fed previously. Lipogenesis is above normal in hydrolyzed glucose-cycloacetoacetate-fed rats but glucose uptake is not appreciably affected. The glucose uptake of adipose tissue is significantly depressed in rats fed high fat, high fat with high protein, and vitamin B1 deficient diets, and in rats with hypothyroidism. Both hyperthyroidism and hydrolyzed glucose-cycloacetoacetate feeding increase glucose uptake by the tissue. Alloxan diabetes reduces lipogenesis as well as glucose uptake.


1985 ◽  
Vol 225 (2) ◽  
pp. 421-428 ◽  
Author(s):  
M H Rider ◽  
L Hue

Injection of insulin to fed rats diminished the concentration of fructose 2,6-bisphosphate in white adipose tissue. Incubation of epididymal fat-pads or adipocytes with insulin stimulated lactate release and sugar detritiation and also decreased fructose 2,6-bisphosphate concentration. Such a decrease was, however, not observed in fat-pads from starved or alloxan-diabetic rats. Incubation of adipocytes from fed rats with various concentrations of glucose or fructose led to a dose-dependent rise in fructose 2,6-bisphosphate which correlated with lactate output and detritiation of 3-3H-labelled sugar. In adipocytes from fed rats, palmitate stimulated the detritiation of [3-3H]glucose without affecting lactate production and fructose 2,6-bisphosphate concentration. Incubation of epididymal fat-pads from fed rats in the presence of antimycin stimulated lactate output but decreased fructose 2,6-bisphosphate concentration. Changes in lipolytic rates brought about by noradrenaline, insulin, adenosine and corticotropin in adipocytes from fed rats were not related to changes in fructose 2,6-bisphosphate or to rates of lactate output. In fed rats, the activity of 6-phosphofructo-2-kinase was not changed after treatment of adipocytes with insulin, noradrenaline or adenosine. It is suggested that the decrease in fructose 2,6-bisphosphate concentration observed after insulin treatment can be explained by the increase in sn-glycerol 3-phosphate, an inhibitor of 6-phosphofructo-2-kinase.


1983 ◽  
Vol 214 (2) ◽  
pp. 459-464 ◽  
Author(s):  
R A Klim ◽  
D H Williamson

Chronic uraemic rats had decreased food intake, and this was accompanied by decreased weight of the epididymal fat-pads and interscapular brown adipose tissue. Normal rats whose food intake was restricted to an amount similar to that of the uraemic rats showed similar decreases in weight of the adipose-tissue depots. In addition, the food-restricted rats had decreased liver weight compared with normal or uraemic rats. The basal rate of lipogenesis was decreased in liver and epididymal fat-pads of food-restricted and uraemic rats and in interscapular brown adipose tissue of uraemic rats. Administration of a low-glucose-containing (1.36%) peritoneal-dialysis solution slightly increased lipogenesis in liver of uraemic rats, but had no significant effect in epididymal fat-pads. For brown fat, the rate of lipogenesis was increased in normal, food-restricted and uraemic groups, but the values for the last group were 4-5-fold lower than for the food-restricted or control groups. A high-glucose-containing (3.86%) peritoneal-dialysis solution gave similar rates of lipogenesis in liver, epididymal fat-pads and brown fat of all three groups, but for brown fat moderately uraemic rats showed a considerably lower rate of lipogenesis than did mildly uraemic rats. The basal plasma insulin concentration was lower in the food-restricted (50%) and uraemic (70%) groups than in the control group. The low-glucose peritoneal-dialysis solution increased plasma insulin to control values in the food-restricted rats, but had no significant effect on plasma insulin in the uraemic rats, despite a significant increase in blood glucose in this group. It is concluded that there is an impairment of the lipogenic response to intraperitoneal glucose loads in interscapular brown adipose tissue of uraemic rats, and that this is not due to the accompanying decrease in food intake. The hypoinsulinaemia may be an important factor. The possible relevance of this finding to the obesity observed in some uraemic patients treated by peritoneal dialysis with glucose-containing solutions is discussed.


1980 ◽  
Vol 58 (3) ◽  
pp. 243-250 ◽  
Author(s):  
David L. Severson ◽  
Shellie Sloan

A phosphoprotein phosphatase has been partially purified from rat epididymal fat pads by a procedure utilizing ammonium sulfate and ethanol precipitations and chromatography on DEAE-Sephadex A-50. The phosphatase was eluted from Sephadex G-75 columns with an apparent molecular weight of 28 000. The phosphoprotein phosphatase catalyzed the reversible deactivation of protein kinase activated chicken adipose tissue hormone-sensitive triglyceride lipase. Phosphatase activity measured with activated triglyceride lipase as substrate was completely dependent upon the presence of metal ions (Mg2+, Ca2+, or Mn2+) and was inhibited by inorganic phosphate and adenine nucleotides. The fat pad phosphatase increased the rate of activation of glycogen synthase in rat adipose tissue infranatant fractions from fed and 24-h-fasted rats but had little or no effect on synthase activity in infranatant fractions from rats fasted for 48 h. Fasting had no effect on rat fat pad phosphatase activity measured with triglyceride lipase as substrate, but phosphatase activity was decreased in preparations from diabetic rats.


1996 ◽  
Vol 270 (2) ◽  
pp. E215-E223 ◽  
Author(s):  
C. Sztalryd ◽  
J. Hamilton ◽  
B. A. Horwitz ◽  
P. Johnson ◽  
F. B. Kraemer

These studies examined the cellular mechanisms for lower adiposity seen with nicotine ingestion. Rats were infused with nicotine or saline for 1 wk and adipocytes isolated from epididymal fat pads. Nicotine-infused rats gained 37% less weight and had 21% smaller fat pads. Basal lipolysis was 78% higher, whereas the maximal lipolytic response to isoproterenol was blunted in adipocytes from nicotine-infused rats. The antilipolytic actions of adenosine and the levels of serum catecholamines were unaffected by nicotine. The nicotine-induced alteration in lipolysis was not associated with any changes in hormone-sensitive lipase. Nicotine caused a 30% decrease in lipoprotein lipase (LPL) activity, without any changes in LPL mass or mRNA levels, in epididymal fat in the fed state. In contrast, LPL activity, mass, and mRNA levels in heart were increased by nicotine whether animals were fed or fasted. These studies provide evidence for multiple mechanistic events underlying nicotine-induced alterations in weight and suggest that nicotine diverts fat storage away from adipose tissue and toward utilization by muscle.


1964 ◽  
Vol 207 (4) ◽  
pp. 840-844 ◽  
Author(s):  
G. Steiner ◽  
G. F. Cahill

Brown and white adipose tissue from rats exposed to 5 C for 9 days has been studied with reference to its composition and handling of glucose-U-C14 in vivo and in vitro. Brown adipose tissue from cold-exposed rats demonstrated a decreased lipid content per milligram nitrogen, due mainly to decreased amounts of neutral lipid with little change in phospholipid. The incorporation of glucose into neutral lipids, glyceride glycerol, and fatty acids was increased in vivo and in vitro. There was increased incorporation into CO2 in vitro and there was no change in glucose conversion to phospholipid in vivo. No changes in any of these were noted in epididymal fat pads. These findings suggest that cold exposure leads to alterations in carbohydrate metabolism and lipogenesis in brown adipose tissue but not in epididymal fat pads. The possible role in thermogenesis is discussed.


1976 ◽  
Vol 160 (3) ◽  
pp. 693-700 ◽  
Author(s):  
P F Dodds ◽  
M I Gurr ◽  
D N Brindley

1. Fat-free homogenates from the epididymal fat-pads of rats were used to measure the rate of palmitate esterification with different substrates. The effectiveness of the acyl acceptors decreased in the order glycerol phosphate, dihydroxyacetone phosphate, 2-octadecenyl-glycerol and 2-hexadecylglycerol. 2. Glycerol phosphate and dihydroxyacetone phosphate inhibited their rates of esterification in a mutually competitive manner. 3. The esterification of glycerol phosphate was also inhibited in a partially competitive manner by 2-octadecenylglycerol and to a lesser extent by 2-hexadecylglycerol. However, glycerol phosphate did not inhibit the esterification of 2-octadecenylglycerol. 4. The esterification of dihydroxyacetone phosphate and 2-hexadecylglycerol was more sensitive to inhibition by clofenapate than was that of glycerol phosphate. Norfenfluramine was more effective in inhibiting the esterification of 2-hexadecylglycerol than that of glycerol phosphate or dihydroxyacetone phosphate. 5 It is concluded that rat adipose tissue can synthesize glycerolipids by three independent routes.


1970 ◽  
Vol 48 (8) ◽  
pp. 915-921 ◽  
Author(s):  
P. R. Desjardins ◽  
K. Dakshinamurti

The properties of a partially purified acetyl-CoA carboxylase (acetyl-CoA:CO2 ligase (ADP), EC 6.4.1.2) from rat epididymal fat pads have been studied. The properties of the rat adipose tissue enzyme are similar to those of the liver in regard to the pH optimum and affinity for substrates and inhibitors. The rat adipose tissue carboxylase shows a pH-dependent, reversible cold inactivation.


1991 ◽  
Vol 279 (2) ◽  
pp. 545-551 ◽  
Author(s):  
T A Diggle ◽  
C Schmitz-Peiffer ◽  
A C Borthwick ◽  
G I Welsh ◽  
R M Denton

Casein kinase 2 activity as measured by phosphorylation of the peptide substrate Arg-Arg-Arg-Glu-Glu-Glu-Thr-Glu-Glu-Glu is increased by about 50% in extracts from insulin-treated epididymal fat-pads or isolated fat-cells after purification by Mono Q chromatography. Insulin acts to increase the Vmax. of the kinase. An acid-soluble protein with an apparent subunit molecular mass of about 22 kDa appears to be a substrate for casein kinase 2. The protein possesses a number of properties in common with the acid-soluble heat-stable 22 kDa protein which exhibits increased phosphorylation in rat adipose tissue exposed to insulin.


Sign in / Sign up

Export Citation Format

Share Document