scholarly journals The stereospecificity of α-chymotrypsin

1968 ◽  
Vol 108 (4) ◽  
pp. 561-569 ◽  
Author(s):  
D. W. Ingles ◽  
J. R. Knowles

1. The rates of deacylation of acyl-α-chymotrypsins in which the hydrogen-bonding capacity of the acylamino group of the substrate has been systematically removed were measured. 2. The ratio of deacylation rates of l- and d-acyl-enzymes is found to depend largely on the existence in the substrate of an amido –NH– group. 3. The data presented agree with the postulate that the stereospecificity of α-chymotrypsin is exercised in catalytic rather than binding steps, and that the active site of the enzyme presents three loci to the substrate: the site containing the catalytic functionalities (including serine-195), the hydrophobic area for amino acid side-chain binding, and a hydrogen-bond acceptor site for acylamino group binding. 4. It is noted that, though the hydrogen-bonding site is crucial for the stereospecificity, the free energy of binding of substrates and inhibitors is dominated by the hydrophobic interaction. 5. It is tentatively proposed that α-chymotrypsin selects a high-energy conformation of the substrate when the latter binds at the enzyme's active site.

2018 ◽  
Vol 74 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Wilhelm Maximilian Hützler ◽  
Michael Bolte

Doubly and triply hydrogen-bonded supramolecular synthons are of particular interest for the rational design of crystal and cocrystal structures in crystal engineering since they show a high robustness due to their high stability and good reliability. The compound 5-methyl-2-thiouracil (2-thiothymine) contains an ADA hydrogen-bonding site (A = acceptor and D = donor) if the S atom is considered as an acceptor. We report herein the results of cocrystallization experiments with the coformers 2,4-diaminopyrimidine, 2,4-diamino-6-phenyl-1,3,5-triazine, 6-amino-3H-isocytosine and melamine, which contain complementary DAD hydrogen-bonding sites and, therefore, should be capable of forming a mixed ADA–DAD N—H...S/N—H...N/N—H...O synthon (denoted synthon 3s N·S;N·N;N·O), consisting of three different hydrogen bonds with 5-methyl-2-thiouracil. The experiments yielded one cocrystal and five solvated cocrystals, namely 5-methyl-2-thiouracil–2,4-diaminopyrimidine (1/2), C5H6N2OS·2C4H6N4, (I), 5-methyl-2-thiouracil–2,4-diaminopyrimidine–N,N-dimethylformamide (2/2/1), 2C5H6N2OS·2C4H6N4·C3H7NO, (II), 5-methyl-2-thiouracil–2,4-diamino-6-phenyl-1,3,5-triazine–N,N-dimethylformamide (2/2/1), 2C5H6N2OS·2C9H9N5·C3H7NO, (III), 5-methyl-2-thiouracil–6-amino-3H-isocytosine–N,N-dimethylformamide (2/2/1), (IV), 2C5H6N2OS·2C4H6N4O·C3H7NO, (IV), 5-methyl-2-thiouracil–6-amino-3H-isocytosine–N,N-dimethylacetamide (2/2/1), 2C5H6N2OS·2C4H6N4O·C4H9NO, (V), and 5-methyl-2-thiouracil–melamine (3/2), 3C5H6N2OS·2C3H6N6, (VI). Synthon 3s N·S;N·N;N·O was formed in three structures in which two-dimensional hydrogen-bonded networks are observed, while doubly hydrogen-bonded interactions were formed instead in the remaining three cocrystals whereby three-dimensional networks are preferred. As desired, the S atoms are involved in hydrogen-bonding interactions in all six structures, thus illustrating the ability of sulfur to act as a hydrogen-bond acceptor and, therefore, its value for application in crystal engineering.


2014 ◽  
Vol 58 (8) ◽  
pp. 4826-4836 ◽  
Author(s):  
Hanna-Kirsti S. Leiros ◽  
Susann Skagseth ◽  
Kine Susann Waade Edvardsen ◽  
Marit Sjo Lorentzen ◽  
Gro Elin Kjæreng Bjerga ◽  
...  

ABSTRACTMetallo-β-lactamases (MBLs) are the causative mechanism for resistance to β-lactams, including carbapenems, in many Gram-negative pathogenic bacteria. One important family of MBLs is the Verona integron-encoded MBLs (VIM). In this study, the importance of residues Asp120, Phe218, and His224 in the most divergent VIM variant, VIM-7, was investigated to better understand the roles of these residues in VIM enzymes through mutations, enzyme kinetics, crystal structures, thermostability, and docking experiments. The tVIM-7-D120A mutant with a tobacco etch virus (TEV) cleavage site was enzymatically inactive, and its structure showed the presence of only the Zn1 ion. The mutant was less thermostable, with a melting temperature (Tm) of 48.5°C, compared to 55.3°C for the wild-type tVIM-7. In the F218Y mutant, a hydrogen bonding cluster was established involving residues Asn70, Asp84, and Arg121. The tVIM-7-F218Y mutant had enhanced activity compared to wild-type tVIM-7, and a slightly higherTm(57.1°C) was observed, most likely due to the hydrogen bonding cluster. Furthermore, the introduction of two additional hydrogen bonds adjacent to the active site in the tVIM-7-H224Y mutant gave a higher thermostability (Tm, 62.9°C) and increased enzymatic activity compared to those of the wild-type tVIM-7. Docking of ceftazidime in to the active site of tVIM-7, tVIM-7-H224Y, and VIM-7-F218Y revealed that the side-chain conformations of residue 224 and Arg228 in the L3 loop and Tyr67 in the L1 loop all influence possible substrate binding conformations. In conclusion, the residue composition of the L3 loop, as shown with the single H224Y mutation, is important for activity particularly toward the positively charged cephalosporins like cefepime and ceftazidime.


1977 ◽  
Vol 165 (2) ◽  
pp. 367-373 ◽  
Author(s):  
J M Old ◽  
D S Jones

The mechanism of the recognition of methionine by Escherichia coli methionyl-tRNA synthetase was examined by a kinetic study of the recognition of methionine analogues in the ATP-PPi exchange reaction and the tRNA-aminoacylation reaction. The results show that the recognition mechanism consists of three parts: (1) the recognition of the size, shape and chemical nature of the amino acid side chain at the methionine-binding stage of the reaction; (2) the recognition of the length of the side chain at the stage of aminoacyl-adenylate complex-formation; (3) the recognition of the sulphur atom in the side chain at the stage of methionyl-tRNA formation. It is proposed that the sulphur atom interacts with the enzyme to induce a conformational change. A model of the active site incorporating the mechanism of methionine recognition is presented.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 899 ◽  
Author(s):  
Pauline A. Lang ◽  
Anete Parkova ◽  
Thomas M. Leissing ◽  
Karina Calvopiña ◽  
Ricky Cain ◽  
...  

Resistance to β-lactam antibacterials, importantly via production of β-lactamases, threatens their widespread use. Bicyclic boronates show promise as clinically useful, dual-action inhibitors of both serine- (SBL) and metallo- (MBL) β-lactamases. In combination with cefepime, the bicyclic boronate taniborbactam is in phase 3 clinical trials for treatment of complicated urinary tract infections. We report kinetic and crystallographic studies on the inhibition of AmpC, the class C β-lactamase from Escherichia coli, by bicyclic boronates, including taniborbactam, with different C-3 side chains. The combined studies reveal that an acylamino side chain is not essential for potent AmpC inhibition by active site binding bicyclic boronates. The tricyclic form of taniborbactam was observed bound to the surface of crystalline AmpC, but not at the active site, where the bicyclic form was observed. Structural comparisons reveal insights into why active site binding of a tricyclic form has been observed with the NDM-1 MBL, but not with other studied β-lactamases. Together with reported studies on the structural basis of inhibition of class A, B and D β-lactamases, our data support the proposal that bicyclic boronates are broad-spectrum β-lactamase inhibitors that work by mimicking a high energy ‘tetrahedral’ intermediate. These results suggest further SAR guided development could improve the breadth of clinically useful β-lactamase inhibition.


Author(s):  
Valeska Gerhardt ◽  
Maya Tutughamiarso ◽  
Michael Bolte

Hydantoin-5-acetic acid [2-(2,5-dioxoimidazolidin-4-yl)acetic acid] and orotic acid (2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid) each contain one rigid acceptor–donor–acceptor hydrogen-bonding site and a flexible side chain, which can adopt different conformations. Since both compounds may be used as coformers for supramolecular complexes, they have been crystallized in order to examine their conformational preferences, giving solvent-free hydantoin-5-acetic acid, C5H6N2O4, (I), and three crystals containing orotic acid, namely, orotic acid dimethyl sulfoxide monosolvate, C5H4N2O4·C2H6OS, (IIa), dimethylammonium orotate–orotic acid (1/1), C2H8N+·C5H3N2O4−·C5H4N2O4, (IIb), and dimethylammonium orotate–orotic acid (3/1), 3C2H8N+·3C5H3N2O4−·C5H4N2O4, (IIc). The crystal structure of (I) shows a three-dimensional network, with the acid function located perpendicular to the ring. Interestingly, the hydroxy O atom acts as an acceptor, even though the carbonyl O atom is not involved in any hydrogen bonds. However, in (IIa), (IIb) and (IIc), the acid functions are only slightly twisted out of the ring planes. All H atoms of the acidic functions are directed away from the rings and, with respect to the carbonyl O atoms, they show an antiperiplanar conformation in (I) and synperiplanar conformations in (IIa), (IIb) and (IIc). Furthermore, in (IIa), (IIb) and (IIc), different conformations of the acid O=C—C—N torsion angle are observed, leading to different hydrogen-bonding arrangements depending on their conformation and composition.


1994 ◽  
Vol 300 (2) ◽  
pp. 491-499 ◽  
Author(s):  
T J Nobbs ◽  
A Cortés ◽  
J L Gelpi ◽  
J J Holbrook ◽  
T Atkinson ◽  
...  

The X-ray structure of lactate dehydrogenase (LDH) shows the side-chain carboxylate group of Asp-143 to be buried in the hydrophobic interior of the enzyme, where it makes hydrogen-bonding interactions with both the side-chain hydroxyl group of Ser-273 and the main-chain amide group of His-195. This is an unusual environment for a carboxylate side-chain as hydrogen bonding normally occurs with water molecules at the surface of the protein. A charged hydrogen-bonding interaction in the interior of a protein would be expected to be much stronger than a similar interaction on the solvent-exposed exterior. In this respect the side-chain carboxylate group of Asp-143 appears to be important for maintaining tertiary structure by providing a common linkage point between three discontinuous elements of the secondary structure, alpha 1F, beta K and the beta-turn joining beta G and beta H. The contribution of the Asp-143 side-chain to the structure and function of Bacillus stearothermophilus LDH was assessed by creating a mutant enzyme containing Asn-143. The decreased thermal stability of both unactivated and fructose-1,6-diphosphate (Fru-1,6-P2)-activated forms of the mutant enzyme support a structural role for Asp-143. Furthermore, the difference in stability of the wild-type and mutant enzymes in guanidinium chloride suggested that the carboxylate group of Asp-143 contributes at least 22 kJ/mol to the conformational stability of the wild-type enzyme. However, there was no alteration in the amount of accessible tryptophan fluorescence in the mutant enzyme, indicating that the mutation caused a structural weakness rather than a gross conformational change. Comparison of the wild-type and mutant enzyme steady-state parameters for various 2-keto acid substrates showed the mutation to have a general effect on catalysis, with an average difference in binding energy of 11 kJ/mol for the transition-state complexes. The different effects of pH and Fru-1,6-P2 on the wild-type and mutant enzymes also confirmed a perturbation of the catalytic centre in the mutant enzyme. As the side-chain of Asp-143 is not sufficiently close to the active site to be directly involved in catalysis or substrate binding it is proposed that the effects on catalysis shown by the mutant enzyme are induced either by a structural change or by charge imbalance at the active site.(ABSTRACT TRUNCATED AT 400 WORDS)


2019 ◽  
Vol 116 (26) ◽  
pp. 13131-13136 ◽  
Author(s):  
Soon Goo Lee ◽  
Eitan Salomon ◽  
Oliver Yu ◽  
Joseph M. Jez

Steviol glucosides, such as stevioside and rebaudioside A, are natural products roughly 200-fold sweeter than sugar and are used as natural, noncaloric sweeteners. Biosynthesis of rebaudioside A, and other related stevia glucosides, involves formation of the steviol diterpenoid followed by a series of glycosylations catalyzed by uridine diphosphate (UDP)-dependent glucosyltransferases. UGT76G1 fromStevia rebaudianacatalyzes the formation of the branched-chain glucoside that defines the stevia molecule and is critical for its high-intensity sweetness. Here, we report the 3D structure of the UDP-glucosyltransferase UGT76G1, including a complex of the protein with UDP and rebaudioside A bound in the active site. The X-ray crystal structure and biochemical analysis of site-directed mutants identifies a catalytic histidine and how the acceptor site of UGT76G1 achieves regioselectivity for branched-glucoside synthesis. The active site accommodates a two-glucosyl side chain and provides a site for addition of a third sugar molecule to the C3′ position of the first C13 sugar group of stevioside. This structure provides insight on the glycosylation of other naturally occurring sweeteners, such as the mogrosides from monk fruit, and a possible template for engineering of steviol biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document