scholarly journals Autolysis of isolated cell walls of Bacillus licheniformis N.C.T.C. 6346 and Bacillus subtilis Marburg strain 168. Separation of the products and characterization of the mucopeptide fragments

1970 ◽  
Vol 119 (5) ◽  
pp. 849-860 ◽  
Author(s):  
R. C. Hughes

1. Cell walls were isolated from Bacillus licheniformis N.C.T.C. 6346 and Bacillus subtilis Marburg strain 168 trp grown on casein hydrolysate into exponential phase. Autolysis was carried out and the soluble products, separated by chromatography on DEAE-cellulose, from the two wall preparations are broadly similar in composition and are in agreement with autolysis proceeding with hydrolysis of amide bonds between l-alanine and N-acetylmuramic acid residues in the mucopeptide components. 2. Peptides originating from the mucopeptide components were isolated and shown to be a monomer peptide, l-alanyl-d-glutamyl-meso-diaminopimelic acid and a dimer peptide containing two monomer peptides linked through a residue of d-alanine. Approximately one amide group is present for each equivalent tripeptide unit and is probably substituted on diaminopimelic acid residues. 3. Oligosaccharides originating from the mucopeptide components were isolated and after hydrolysis contained almost equimolar amounts of glucosamine and muramic acid and only very small amounts of amino acids. The number-average chain length, estimated by the release of non-reducing end groups of N-acetylglucosamine with exo-β-N-acetylglucosaminidase, is approximately ten hexosamine residues for oligosaccharides isolated from either organism. The oligosaccharides are polydisperse. 4. N-Acetylglucosamine residues are the only reducing terminals detectable in the oligosaccharides isolated from B. subtilis or B. licheniformis cell-wall autolysates. The number-average chain lengths of the oligosaccharides were determined by estimation of the content of these residues and are higher than those found by enzymic assay. Possible reasons for the discrepancy are discussed.

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 451 ◽  
Author(s):  
Jin Hoon Jang ◽  
Ok Ran Lee

Lipid acyl hydrolase are a diverse group of enzymes that hydrolyze the ester or amide bonds of fatty acid in plant lipids. Patatin-related phospholipase AIIIs (pPLAIIIs) are one of major lipid acyl hydrolases that are less closely related to potato tuber patatins and are plant-specific. Recently, overexpression of ginseng-derived PgpPLAIIIβ was reported to be involved in the reduced level of lignin content in Arabidopsis and the mature xylem layer of poplar. The presence of lignin-polysaccharides renders cell walls recalcitrant for pulping and biofuel production. The tissue-specific regulation of lignin biosynthesis, without altering all xylem in plants, can be utilized usefully by keeping mechanical strength and resistance to various environmental stimuli. To identify another pPLAIII homolog from Arabidopsis, constitutively overexpressed AtpPLAIIIα was characterized for xylem lignification in two well-studied model plants, Arabidopsis and poplar. The characterization of gene function in annual and perennial plants with respect to lignin biosynthesis revealed the functional redundancy of less lignification via downregulation of lignin biosynthesis-related genes.


1987 ◽  
Vol 169 (1) ◽  
pp. 324-333 ◽  
Author(s):  
A Amory ◽  
F Kunst ◽  
E Aubert ◽  
A Klier ◽  
G Rapoport

1973 ◽  
Vol 19 (8) ◽  
pp. 1049-1051
Author(s):  
Siegfried Maier

The suitability of tritiated 2,6-diaminopimelic acid (3H-DAP) as a label specific for cell walls was explored in Bacillus subtilis BC 102 grown in a medium enriched with 3H-DAP and an excess of L-lysine. Fractionation of labeled cells showed 57% of the activity in the cell wall and 28% in the membrane. Chromatography of labeled wall hydrolysates revealed two activity peaks: 62% in DAP and 29% in glutamic acid – alanine. Labeled membrane was devoid of activity in the DAP position. Chromatographic purification of the 3H-DAP improved specificity, giving 7% of the activity in the membrane and 85% in the wall. In such walls DAP accounted for 82% of the total wall activity. Therefore, only 69% of the total fixed purified 3H label remained with DAP in the wall.


2002 ◽  
Vol 184 (20) ◽  
pp. 5609-5618 ◽  
Author(s):  
Tracey L. Campbell ◽  
Eric D. Brown

ABSTRACT The ispF gene product in Escherichia coli has been shown to catalyze the formation of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (MEC) in the deoxyxylulose (DOXP) pathway for isoprenoid biosynthesis. In this work, the E. coli gene ispF and its Bacillus subtilis orthologue, yacN, were deleted and conditionally complemented by expression of these genes from distant loci in the respective organisms. In E. coli, complementation was achieved through integration of ispF at the araBAD locus with control from the arabinose-inducible araBAD promoter, while in B. subtilis, yacN was placed at amyE under control of the xylose-inducible xylA promoter. In both cases, growth was severely retarded in the absence of inducer, consistent with these genes being essential for survival. E. coli cells depleted of MEC synthase revealed a filamentous phenotype. This was in contrast to the depletion of MEC synthase in B. subtilis, which resulted in a loss of rod shape, irregular septation, multicompartmentalized cells, and thickened cell walls. To probe the nature of the predominant deficiency of MEC synthase-depleted cells, we investigated the sensitivity of these conditionally complemented mutants, grown with various concentrations of inducer, to a wide variety antibiotics. Synthetic lethal behavior in MEC synthase-depleted cells was prevalent for cell wall-active antibiotics.


1970 ◽  
Vol 117 (3) ◽  
pp. 441-449 ◽  
Author(s):  
R. C. Hughes ◽  
P. F. Thurman

A teichuronic acid, containing glucuronic acid and N-acetylgalactosamine, was purified from acid extracts of Bacillus licheniformis 6346 cell walls as described by Janczura, Perkins & Rogers (1961). After reduction of the carboxyl function of glucuronic acid residues in the polysaccharide the reduced polymer contains equimolar amounts of N-acetylgalactosamine and glucose. Methylation of the reduced polysaccharide by the Hakamori (1964) technique showed the glucose residues to be substituted on C-4. A disaccharide, 3-O-glucuronosylgalactosamine, was isolated from partial acid hydrolysates of teichuronic acid. After N-acetylation the disaccharide produces chromogen readily on heating at pH7, in agreement with C-3 substitution of the reducing N-acetylamino sugar. Teichuronic acid also produces chromogen under the same conditions, with concurrent elimination of a modified polysaccharide from C-3 of reducing terminal N-acetylgalactosamine residues of the teichuronic acid chains. The number-average chain lengths of several preparations of teichuronic acid were estimated from the amounts of chromogen produced in comparison with the N-acetylated disaccharide. The values obtained are in good agreement with the weight-average molecular weight determined by ultracentrifugal analysis. The reducing terminals of teichuronic acid are shown to be exclusively N-acetylgalactosamine by reduction with sodium boro[3H]hydride. The number-average chain lengths of the teichuronic acid preparations were estimated by the extent of in corporation of tritium and are in agreement with values obtained by the other methods.


Sign in / Sign up

Export Citation Format

Share Document