scholarly journals Factors regulating amino acid release from extrasplanchnic tissues in the rat. Interactions of alanine and glutamine

1975 ◽  
Vol 150 (3) ◽  
pp. 379-387 ◽  
Author(s):  
P J Blackshear ◽  
P A Holloway ◽  
K G Alberti

1. Factors regulating the release of alanine and glutamine in vivo were investigated in starved rats by removing the liver from the circulation and monitoring blood metabolite changes for 30 min. 2. Alanine and glutamine were the predominant amino acids released into the circulation in this preparation. 3. Dichloroacetate, an activator of pyruvate dehydrogenase, inhibited net alanine release: it also interfered with the metabolism of the branched-chain amino acids valine, leucine and isoleucine. 4. L-Cycloserine, an inhibitor of alanine aminotransferase, decreased alanine accumulation by 80% after functional hepatectomy, whereas methionine sulphoximine, an inhibitor of glutamine synthetase, decreased glutamine accumulation by the same amount. 5. It was concluded that: (a) the alanine aminotransferase and the glutamine synthetase pathways respectively were responsible for 80% of the alanine and glutamine released into the circulation by the extrasplanchnic tissues, and extrahepatic proteolysis could account for a maximum of 20%; (b) alanine formation by the peripheral tissues was dependent on availability of pyruvate and not of glutamate; (c) glutamate availability could influence glutamine formation subject, possibly, to renal control.

Author(s):  
Moath Alqaraleh ◽  
Violet Kasabri ◽  
Ibrahim Al-Majali ◽  
Nihad Al-Othman ◽  
Nihad Al-Othman ◽  
...  

Background and aims: Branched chain amino acids (BCAAs) can be tightly connected to metabolism syndrome (MetS) which can be counted as a metabolic indicator in the case of insulin resistance (IR). The aim of this study was to assess the potential role of these acids under oxidative stress. Material and Methods: the in vitro antioxidant activity of BCAAs was assessed using free radical 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging assays. For further check, a qRT-PCR technique was madefor detection the extent of alterations in gene expression of antioxidative enzymes (catalase and glutathione peroxidase (Gpx)) in lipopolysaccharides (LPS(-induced macrophages RAW 264.7 cell line. Additionally, BCAAs antioxidant activity was evaluated based on plasma H2O2 levels and xanthine oxidase (XO) activity in prooxidative LPS-treated mice. Results: Different concentrations of BCAAs affected on DPPH radical scavenging activity but to lesser extent than the ascorbic acid. Besides, BCAAs obviously upregulated the gene expression levels of catalases and Gpx in LPS-modulated macrophage RAW 264.7 cell line. In vivo BCAAs significantly minimized the level of plasma H2O2 as well as the activity of XO activity under oxidative stress. Conclusion: our current findings suggest that BCAAs supplementation may potentially serve as a therapeutic target for treatment of oxidative stress occurs with atherosclerosis, IR-diabetes, MetS and tumorigenesis.


1998 ◽  
Vol 274 (1) ◽  
pp. E13-E22 ◽  
Author(s):  
Misoo Chung ◽  
Cecilia Teng ◽  
Michelle Timmerman ◽  
Giacomo Meschia ◽  
Frederick C. Battaglia

Uterine and umbilical uptakes of plasma amino acids were measured simultaneously in eighteen singleton pregnant ewes at 130 ± 1 days gestation for the purpose of establishing which amino acids are produced or used by the uteroplacenta under normal physiological conditions and at what rates. The branched-chain amino acids (BCAA) had uterine uptakes significantly greater than umbilical uptakes. Net uteroplacental BCAA utilization was 8.0 ± 2.5 μmol ⋅ kg fetus−1 ⋅ min−1( P < 0.005) and represented 42% of the total BCAA utilization by fetus plus uteroplacenta. There was placental uptake of fetal glutamate (4.2 ± 0.3 μmol ⋅ kg fetus−1 ⋅ min−1, P < 0.001) and no uterine uptake of maternal glutamate. Umbilical uptake of glutamine was ∼61% greater than uterine uptake, thus demonstrating net uteroplacental glutamine production of 2.2 ± 0.9 μmol ⋅ kg fetus−1 ⋅ min−1( P < 0.021). In conjunction with other evidence, these data indicate rapid placental metabolism of glutamate, which is in part supplied by the fetus and in part produced locally via BCAA transamination. Most of the glutamate is oxidized, and some is used to synthesize glutamine, which is delivered to the fetus. There was net uteroplacental utilization of maternal serine and umbilical uptake of glycine produced by the placenta. Maternal serine utilization and glycine umbilical uptake were virtually equal (3.14 ± 0.50 vs. 3.10 ± 0.46 μmol ⋅ kg fetus−1 ⋅ min−1). This evidence supports the conclusion that the ovine placenta converts large quantities of maternal serine into fetal glycine.


2008 ◽  
Vol 190 (18) ◽  
pp. 6134-6147 ◽  
Author(s):  
Shigeo Tojo ◽  
Takenori Satomura ◽  
Kanako Kumamoto ◽  
Kazutake Hirooka ◽  
Yasutaro Fujita

ABSTRACT Branched-chain amino acids are the most abundant amino acids in proteins. The Bacillus subtilis ilv-leu operon is involved in the biosynthesis of branched-chain amino acids. This operon exhibits a RelA-dependent positive stringent response to amino acid starvation. We investigated this positive stringent response upon lysine starvation as well as decoyinine treatment. Deletion analysis involving various lacZ fusions revealed two molecular mechanisms underlying the positive stringent response of ilv-leu, i.e., CodY-dependent and -independent mechanisms. The former is most likely triggered by the decrease in the in vivo concentration of GTP upon lysine starvation, GTP being a corepressor of the CodY protein. So, the GTP decrease derepressed ilv-leu expression through detachment of the CodY protein from its cis elements upstream of the ilv-leu promoter. By means of base substitution and in vitro transcription analyses, the latter (CodY-independent) mechanism was found to comprise the modulation of the transcription initiation frequency, which likely depends on fluctuation of the in vivo RNA polymerase substrate concentrations after stringent treatment, and to involve at least the base species of adenine at the 5′ end of the ilv-leu transcript. As discussed, this mechanism is presumably distinct from that for B. subtilis rrn operons, which involves changes in the in vivo concentration of the initiating GTP.


1980 ◽  
Vol 188 (3) ◽  
pp. 705-713 ◽  
Author(s):  
G Livesey ◽  
P Lund

1. A procedure is described for the purification of leucine dehydrogenase (EC 1.4.1.9) from Bacillus subtilis. 2. The preparation is suitable for the quantitative assay of branched-chain amino acids and their 2-oxoacid analogues. 3. The content of total branched-chain 2-oxoacids in freeze-clamped liver, kidney, heart or mammary gland of fed rats is less than 5 nmol/g fresh wt. Higher amounts are present in skeletal muscle and arterial blood (25 +/- 4 nmol per g fresh wt., and 33 +/- 6 nmol per ml respectively; means +/- S.D. of 3 and 11 animals respectively). The values are not significantly affected by starvation for 24 h. 4. Arteriovenous difference measurements show that considerable amounts of branched-chain 2-oxoacids are released by skeletal muscle into the circulation and similar amounts are removed by the liver (about 1 mmol/24 h in a 400 g rat).


1988 ◽  
Vol 254 (2) ◽  
pp. 579-584 ◽  
Author(s):  
P J Garlick ◽  
I Grant

Rates of muscle protein synthesis were measured in vivo in tissues of post-absorptive young rats that were given intravenous infusions of various combinations of insulin and amino acids. In the absence of amino acid infusion, there was a steady rise in muscle protein synthesis with plasma insulin concentration up to 158 mu units/ml, but when a complete amino acids mixtures was included maximal rates were obtained at 20 mu units/ml. The effect of the complete mixture could be reproduced by a mixture of essential amino acids or of branched-chain amino acids, but not by a non-essential mixture, alanine, methionine or glutamine. It is concluded that amino acids, particularly the branched-chain ones, increase the sensitivity of muscle protein synthesis to insulin.


1983 ◽  
Vol 210 (2) ◽  
pp. 451-455 ◽  
Author(s):  
N G Anderson ◽  
P J Hanson

1. A method is described for measuring arteriovenous differences across the rat stomach in vivo. 2. Notable results were the uptake of branched-chain amino acids, the uptake of arginine, which was approximately balanced by an output of ornithine, and the output of alanine. 3. The fractional extraction of glutamine from the blood by the stomach wall of pentagastrin-stimulated rats was 4.7%. 4. The arteriovenous differences for ammonia depended upon the blood ammonia concentration. 5. Arteriovenous differences were not affected by the stimulation of acid secretion with pentagastrin. 6. It is concluded that the high activity of branched-chain-amino-acid aminotransferase (EC 2.6.1.42) in the gastric mucosa is associated with metabolism of these amino acids, but that the stomach wall is a less avid user of glutamine than is the small intestine.


1984 ◽  
Vol 247 (5) ◽  
pp. C450-C453 ◽  
Author(s):  
J. T. Brosnan ◽  
R. G. Forsey ◽  
M. E. Brosnan

The uptake of tyrosine and leucine by brain of control and diabetic rats was examined using the Oldendorf intracarotid injection technique. The brain uptake indexes (BUI) for tyrosine and leucine were identical in diabetic and control rats when the injectate consisted of labeled amino acids in Krebs saline. When the injectate consisted of radioactive amino acids added to plasma from either normal or diabetic rats, there was a decreased BUI for tyrosine from diabetic plasma compared with that from normal plasma. This was evident in both control and diabetic rats. Fractional uptake of leucine was unchanged in all situations. Because leucine level is elevated in plasma of diabetic rats there is an absolute increase in leucine uptake in diabetes. Branched-chain amino acids, added to normal plasma in the concentrations at which they occur in diabetic plasma, inhibited the uptake of tyrosine to the same extent as diabetic plasma did. We conclude that the decreased brain uptake and decreased brain level of tyrosine in diabetes is due to the high circulating levels of branched-chain amino acids and cannot be attributed to intrinsic changes in the blood-brain transporter for large neutral amino acids or to changes in other constituents of plasma.


1986 ◽  
Vol 251 (4) ◽  
pp. E393-E399 ◽  
Author(s):  
M. H. Fernstrom ◽  
E. A. Volk ◽  
J. D. Fernstrom

The uptake of tyrosine into rat retina and brain was studied in vivo after its peripheral injection alone or in combination with other amino acids. Both retinal and brain tyrosine levels increased monotonically for at least 60 min after tyrosine administration. When tyrosine was injected along with branched-chain amino acids, but not with acidic amino acids, such increments in retinal and brain tyrosine levels were significantly attenuated. The postinjection tyrosine levels in retina and brain paralleled better the serum ratio of tyrosine to the sum of the other large neutral amino acids (which include the branched-chain amino acids) than the serum tyrosine level alone. These results suggest that tyrosine uptake into rat retina, like that into brain, is mediated by a competitive transport system shared among the large neutral amino acids.


Sign in / Sign up

Export Citation Format

Share Document