scholarly journals Membrane-lipid unsaturation and mitochondrial function in Saacharomyces cerevisiae

1975 ◽  
Vol 146 (2) ◽  
pp. 409-416 ◽  
Author(s):  
K Watson ◽  
R L Houghton ◽  
E Bertoli ◽  
D E Griffiths

The lipid composition of yeast cells was manipulated by the use of an unsaturated fatty acid auxotroph of Saccharomyces cerevisiae. There was a 2-3-fold decrease in the concentration of cytochromes a+a3 when the unsaturated fatty acid content of the cells was decreased from 60-70% of the total fatty acid to 20-30%. The amounts of cytochromes b and c were also decreased under these conditions, but to a lesser extent. Further lipid depletion, to proportions of less than 20% unsaturated fatty acid, led to a dramatic decrease in the content of all cytochromes, particularly cytochromes a+a3. The ATPase (adenosine triphosphatase), succinate oxidase and NADH oxidase activities of the isolated mitochondria also varied with the degree of unsaturation of the membrane lipids. The lower the percentage of unsaturated fatty acid, the lower was the enzymic activity. Inhibition of mitochondrial ATPase by oligomycin, on the other hand, was not markedly influenced by the membrane-lipid unsaturation. Npn-linear Arrenius plots of mitochondrial membrane-bound enzymes showed transition temperatures that were dependent on the degree of membrane-lipid unsaturation. The greater the degree of lipid unsaturation, the lower was the transition temperature. It was concluded that the degree of unsaturation of the membrane lipids plays an important role in determining the properties of mitochondrial membrane-bound enzymes.

2016 ◽  
Vol 8 (9) ◽  
pp. 71 ◽  
Author(s):  
Yuanyuan Guo ◽  
Shanshan Liu ◽  
Zhen Yang ◽  
Shanshan Tian ◽  
Na Sui

<p>Low temperature is a major factor limiting the productivity and geographical distribution of many plant species. In this study, we investigated the effect of chilling stress (10 <sup>o</sup>C) on seedling growth in two sweet sorghum (<em>Sorghum bicolor </em>(L.) Moench) inbred lines (M-81E and Roma). Results showed that the chilling resistance of M-81E was higher than that of Roma. The Fv/Fm in leaves of M-81E decreased less than that of Roma during chilling stress. After 24 h of chilling stress, the Fv/Fm of M-81E and Roma decreased by 24.3 and 45.8%, respectively. Fo was also affected significantly during chilling stress. Malondialdehyde (MDA), an indicator of lipid peroxidation caused by ROS, increased during chilling stress. The contents of MDA increased less in leaves of M-81E than that in Roma under chilling stress. The antioxidant enzymes (SOD and APX) activity of M-81E was higher than those of Roma during chilling stress. The unsaturated fatty acid content and the double bond index (DBI) of major membrane lipids of MGDG, DGDG, SQDG, PC, PE and PG of M-81E significantly increased after 24 h of chilling treatment (10 <sup>o</sup>C). The DBI of MGDG, DGDG, SQDG, PC and PG of Roma significantly decreased. These results showed that the chilling tolerance of M-81E was higher than that of Roma by increasing of unsaturated fatty acid in membrane lipid and powerful protective enzyme system at seedling stage.</p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zolian S. Zoong Lwe ◽  
Ruth Welti ◽  
Daniel Anco ◽  
Salman Naveed ◽  
Sachin Rustgi ◽  
...  

AbstractUnderstanding the changes in peanut (Arachis hypogaea L.) anther lipidome under heat stress (HT) will aid in understanding the mechanisms of heat tolerance. We profiled the anther lipidome of seven genotypes exposed to ambient temperature (AT) or HT during flowering. Under AT and HT, the lipidome was dominated by phosphatidylcholine (PC), phosphatidylethanolamine (PE), and triacylglycerol (TAG) species (> 50% of total lipids). Of 89 lipid analytes specified by total acyl carbons:total carbon–carbon double bonds, 36:6, 36:5, and 34:3 PC and 34:3 PE (all contain 18:3 fatty acid and decreased under HT) were the most important lipids that differentiated HT from AT. Heat stress caused decreases in unsaturation indices of membrane lipids, primarily due to decreases in highly-unsaturated lipid species that contained 18:3 fatty acids. In parallel, the expression of Fatty Acid Desaturase 3-2 (FAD3-2; converts 18:2 fatty acids to 18:3) decreased under HT for the heat-tolerant genotype SPT 06-07 but not for the susceptible genotype Bailey. Our results suggested that decreasing lipid unsaturation levels by lowering 18:3 fatty-acid amount through reducing FAD3 expression is likely an acclimation mechanism to heat stress in peanut. Thus, genotypes that are more efficient in doing so will be relatively more tolerant to HT.


1981 ◽  
Vol 198 (1) ◽  
pp. 167-175 ◽  
Author(s):  
S M Innis ◽  
M T Clandinin

A longitudinal cross-over feeding design was used to investigate the relationship of dietary lipid composition to the membrane lipid environment and activity of mitochondrial ATPase in vivo. Rats were fed a polyunsaturated fatty-acid-rich oil (soya-bean oil) for 12 days, crossed-over to a monounsaturated fatty-acid-rich oil (rapeseed oil) for the next 11 days, then returned to soya-bean oil for 11 more days. Additional rats were fed either soya-bean oil or rapeseed oil throughout. Rats fed rapeseed oil had lower rates of ATPase-catalysed ATP/[32P]Pi exchange than rats fed soya-bean oil. Arrhenius plots showed higher transition temperature (Tt) and activation energy (Ea) for rats fed rapeseed oil. Switching from soya-bean oil to rapeseed oil was dynamically followed by changes in the thermotropic and kinetic properties of the mitochondrial ATPase exchange reaction. Returning to soya-bean oil reversed these changes. The rapid and reversible modulation of Tt caused by a change of the type of fat ingested suggests that membrane physicochemical properties are not under rigid intrinsic control but are continually modified by the profile of exogenously derived fatty acids. The studies suggest that in vivo the activity of mitochondrial ATPase is in part determined by dietary lipid via its influence on the microenvironment of the enzyme. The rapidity and ready reversibility of changes observed for this subcellular-membrane-bound enzyme suggest that dietary fatty-acid balance may be an important determinant of other membrane functions in the body.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenqian Liu ◽  
Ruoyan Zhang ◽  
Chenggang Xiang ◽  
Ruiyun Zhang ◽  
Qing Wang ◽  
...  

Climate changes especially chilling stress affects cucurbit crops during winter seasonal production. Grafting to pumpkin rootstocks is widely used to improve the vigor of cucurbits, especially cucumber (Cucumis sativus L.) plants, in the face of chilling stress. In our study, multi-disciplinary aspect approaches were used to investigate growth changes of pumpkin under chilling stress. Firstly, the morphological and physiological characteristics of 14 pumpkin (Cucurbita moschata) varieties following different periods of chilling stress was analyzed by using physiological means. Mathematical results of principal component analysis (PCA) with chlorophyll-a, chlorophyll-b, carotenoid contents, chilling injury index and relative electrolyte permeability indicated that relative electrolyte permeability as the primary judgment index was best associated with the comparison of chilling tolerance in pumpkin rootstock varieties. Then, transcriptomic and DCMU (Diuron) application and chlorophyll fluorescence examination analysis of pumpkin leaves revealed that 390 Cucurbita moschata differentially expressed genes (CmoDEGs) that affect photosynthesis were upregulated in leaves. 127 CmoDEGs both in leaves and roots were enriched for genes involved in unsaturated fatty acid metabolism, suggesting that plasma membrane lipids are involved in chilling perception. The results of increased composition of unsaturated fatty acid in leaves and qRT-PCR analysis of relative mRNA abundance confirmed that α-linolenic acid biosynthesis was responding to pumpkin chilling tolerance. The integration of physiological, mathematical bioinformatical and biological analysis results contributes to our understanding of the molecular mechanisms underlying chilling tolerance and its improvement in cucumber grafted on pumpkin rootstocks. It provided an important theoretical basis and reference for further understanding on the impact of climate change on plant physiological changes.


Microbiology ◽  
2021 ◽  
Vol 167 (11) ◽  
Author(s):  
Elena A. Ianutsevich ◽  
Olga A. Danilova ◽  
Sofiya A. Bondarenko ◽  
Vera M. Tereshina

Previously, we showed for the first time that alkaliphilic fungi, in contrast to alkalitolerant fungi, accumulated trehalose under extremely alkaline conditions, and we have proposed its key role in alkaliphilia. We propose that high levels of trehalose in the mycelium of alkaliphiles may promote adaptation not only to alkaline conditions, but also to other stressors. Therefore, we studied changes in the composition of osmolytes, and storage and membrane lipids under the action of cold (CS), heat (HS) and osmotic (OS) shocks in the obligate alkaliphilic micromycete Sodiomyces tronii. During adaptation to CS, an increase in the degree of unsaturation of phospholipids was observed while the composition of osmolytes, membrane and storage lipids remained the same. Under HS conditions, a twofold increase in the level of trehalose and an increase in the proportion of phosphatidylethanolamines were observed against the background of a decrease in the proportion of phosphatidic acids. OS was accompanied by a decrease in the amount of membrane lipids, while their ratio remained unchanged, and an increase in the level of polyols (arabitol and mannitol) in the fungal mycelium, which suggests their role for adaptation to OS. Thus, the observed consistency of the composition of membrane lipids suggests that trehalose can participate in adaptation not only to extremely alkaline conditions, but also to other stressors – HS, CS and OS. Taken together, the data obtained indicate the adaptability of the fungus to the action of various stressors, which can point to polyextremotolerance.


Sign in / Sign up

Export Citation Format

Share Document