scholarly journals Adrenaline responsiveness of glucose metabolism in insulin-resistant adipose tissue of rats fed a high-fat diet

1979 ◽  
Vol 180 (2) ◽  
pp. 431-433 ◽  
Author(s):  
C Susini ◽  
M Lavau ◽  
J Herzog

The effects of adrenaline (0.5 microM) and the combination of adrenaline and insulin (1.7nM) on [6-14C]glucose metabolism were assessed in epididymal fat-pads from rats fed either a low- or high-fat diet. The response of lipolysis to adrenaline was clearly diminished in fat-fed rats. Insulin added to adrenaline inhibited the lipolysis by 50% regardless of the diet. Glucose utilization in adipose tissue of fat-fed rats was markedly stimulated by adrenaline (glucose uptake was increased 3-fold and the production of CO2 and the glycerol moiety of acylglycerol was increased 4-fold). However, adipose tissue from fat-fed rats was resistant to the effect of insulin to produce a further increase in adrenaline-stimulated glucose uptake. The intracellular capacity of lipogenesis on the one hand, and the production of CO2 and the glycerol moiety of acylglycerol on the other, are of prime importance in the action of insulin and adrenaline on glucose utilization in this model.

2018 ◽  
Vol 315 (4) ◽  
pp. R627-R637 ◽  
Author(s):  
Zachary S. Clayton ◽  
Carrie E. McCurdy

Systemic insulin resistance and glucose intolerance occur with as little as 3 days of a high-fat diet (HFD) in mice and humans; the mechanisms that initiate acute insulin resistance are unknown. Most laboratories house mice at 22°C, which is below their thermoneutral temperature (~30°C). Cold stress has been shown to increase white adipose tissue (WAT) browning, alter lipid trafficking, and impair immune function, whereas energy intake and expenditure decrease with increasing ambient temperature; importantly, dysregulation of these parameters has been strongly linked to obesity-induced insulin resistance. Therefore, we compared acute changes in glucose metabolism and the metabolic phenotype in lean mice in response to a control diet or HFD housed at standard vivarium (22°C) and thermoneutral (30°C) temperatures. Glucose intolerance occurred following 1 or 5 days of HFD and was independent of housing temperature or adiposity; however, the reduction in tissue-specific glucose clearance with HFD diverged by temperature with reduced brown adipose tissue (BAT) glucose uptake at 22°C but reduced soleus glucose uptake at 30°C. Fasting glucose, food intake, and energy expenditure were significantly lower at 30°C, independent of diet. Additionally, markers of browning in both BAT and inguinal subcutaneous WAT, but not perigonadal epididymal WAT, decreased at 30°C. Together, we find housing temperature has a significant impact on the cellular pathways that regulate glucose tolerance in response to an acute HFD exposure. Thus, even short-term changes in housing temperature should be highly considered in interpretation of metabolic studies in mice.


Author(s):  
Randall F. D'Souza ◽  
Stewart W.C. Masson ◽  
Jonathan S. T. Woodhead ◽  
Samuel L James ◽  
Caitlin MacRae ◽  
...  

Neutrophils accumulate in insulin sensitive tissues during obesity and may play a role in impairing insulin sensitivity. The major serine protease expressed by neutrophils is neutrophil elastase (NE), which is inhibited endogenously by α1-antitrypsin A (A1AT). We investigated the effect of exogenous (A1AT) treatment on diet induced metabolic dysfunction. Male C57Bl/6j mice fed a chow or a high fat diet (HFD) were randomized to receive 3x weekly i.p injections of either Prolastin (human A1AT; 2mg) or vehicle (PBS) for 10 weeks. Prolastin treatment did not affect plasma NE concentration, body weight, glucose tolerance or insulin sensitivity in chow fed mice. In contrast, Prolastin treatment attenuated HFD induced increases in plasma and white adipose tissue (WAT) NE without affecting circulatory neutrophil levels or increases in body weight. Prolastin-treated mice fed a HFD had improved insulin sensitivity, as assessed by insulin tolerance test, and this was associated with higher insulin-dependent IRS-1 (insulin receptor substrate) and AktSer473phosphorylation, and reduced inflammation markers in WAT but not liver or muscle. In 3T3-L1 adipocytes, Prolastin reversed recombinant NE-induced impairment of insulin-stimulated glucose uptake and IRS-1 phosphorylation. Furthermore, PDGF mediated p-AktSer473 activation and glucose uptake (which is independent of IRS-1) was not affected by recombinant NE treatment. Collectively, our findings suggest that NE infiltration of WAT during metabolic overload contributes to insulin-resistance by impairing insulin-induced IRS-1 signaling.


1961 ◽  
Vol 201 (6) ◽  
pp. 1041-1043 ◽  
Author(s):  
J. M. Khanade ◽  
M. C. Nath

Lipogenesis and glucose uptake by epididymal fat pads of rats fed different diets have been investigated. Lipogenesis was found to be depressed in rats fed high fat, high fat and high protein, thyroid, thiouracil, and thiamine-deficient diets. The same dose of insulin causes varying degrees of lipogenesis in the tissues, depending on the type of diet fed previously. Lipogenesis is above normal in hydrolyzed glucose-cycloacetoacetate-fed rats but glucose uptake is not appreciably affected. The glucose uptake of adipose tissue is significantly depressed in rats fed high fat, high fat with high protein, and vitamin B1 deficient diets, and in rats with hypothyroidism. Both hyperthyroidism and hydrolyzed glucose-cycloacetoacetate feeding increase glucose uptake by the tissue. Alloxan diabetes reduces lipogenesis as well as glucose uptake.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Caiping Lu ◽  
Hanying Xing ◽  
Linquan Yang ◽  
Kaiting Chen ◽  
Linyi Shu ◽  
...  

Diabetes mellitus is highly prevalent worldwide. High-fat-diet (HFD) consumption can lead to liver fat accumulation, impair hepatic glycometabolism, and cause insulin resistance and the development of diabetes. Resveratrol has been shown to improve the blood glucose concentration of diabetic mice, but its effect on the abnormal hepatic glycometabolism induced by HFD-feeding and the mechanism involved are unknown. In this study, we determined the effects of resveratrol on the insulin resistance of high-fat-diet-fed mice and a hepatocyte model by measuring serum biochemical indexes, key indicators of glycometabolism, glucose uptake, and glycogen synthesis in hepatocytes. We found that resveratrol treatment significantly ameliorated the HFD-induced abnormalities in glucose metabolism in mice, increased glucose absorption and glycogen synthesis, downregulated protein phosphatase 2A (PP2A) and activated Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ), and increased the phosphorylation of AMP-activated protein kinase (AMPK). In insulin-resistant HepG2 cells, the administration of a PP2A activator or CaMKKβ inhibitor attenuated the effects of resveratrol, but the administration of an AMPK inhibitor abolished the effects of resveratrol. Resveratrol significantly ameliorates abnormalities in glycometabolism induced by HFD-feeding and increases glucose uptake and glycogen synthesis in hepatocytes. These effects are mediated through the activation of AMPK by PP2A and CaMKKβ.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1059
Author(s):  
Si Fan ◽  
Samnhita Raychaudhuri ◽  
Olivia Kraus ◽  
Md Shahinozzaman ◽  
Leila Lofti ◽  
...  

The shoot of Urtica dioica is used in several cultures as a vegetable or herb. However, not much has been studied about the potential of this plant when consumed as a whole food/vegetable rather than an extract for dietary supplements. In a 12-week dietary intervention study, we tested the effect of U. dioica vegetable on high fat diet induced obesity and insulin resistance in C57BL/6J mice. Mice were fed ad libitum with isocaloric diets containing 10% fat or 45% fat with or without U. dioica. The diet supplemented with U. dioica attenuated high fat diet induced weight gain (p < 0.005; n = 9), fat accumulation in adipose tissue (p < 0.005; n = 9), and whole-body insulin resistance (HOMA-IR index) (p < 0.001; n = 9). Analysis of gene expression in skeletal muscle showed no effect on the constituents of the insulin signaling pathway (AKT, IRS proteins, PI3K, GLUT4, and insulin receptor). Notable genes that impact lipid or glucose metabolism and whose expression was changed by U. dioica include fasting induced adipocyte factor (FIAF) in adipose and skeletal muscle, peroxisome proliferator-activated receptor-α (Ppar-α) and forkhead box protein (FOXO1) in muscle and liver, and Carnitine palmitoyltransferase I (Cpt1) in liver (p < 0.01). We conclude that U. dioica vegetable protects against diet induced obesity through mechanisms involving lipid accumulation and glucose metabolism in skeletal muscle, liver, and adipose tissue.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Bingxin Lu ◽  
Jianing Zhong ◽  
Jianfei Pan ◽  
Xiaopeng Yuan ◽  
Mingzhi Ren ◽  
...  

Abstract Background The growth differentiation factor 11 (GDF11) was shown to reverse age-related hypertrophy on cardiomyocytes and considered as anti-aging rejuvenation factor. The role of GDF11 in regulating metabolic homeostasis is unclear. In this study, we investigated the functions of GDF11 in regulating metabolic homeostasis and energy balance. Methods Using a hydrodynamic injection approach, plasmids carrying a mouse Gdf11 gene were delivered into mice and generated the sustained Gdf11 expression in the liver and its protein level in the blood. High fat diet (HFD)-induced obesity was employed to examine the impacts of Gdf11 gene transfer on HFD-induced adiposity, hyperglycemia, insulin resistance, and hepatic lipid accumulation. The impacts of GDF11 on metabolic homeostasis of obese and diabetic mice were examined using HFD-induced obese and STZ-induced diabetic models. Results Gdf11 gene transfer alleviates HFD-induced obesity, hyperglycemia, insulin resistance, and fatty liver development. In obese and STZ-induced diabetic mice, Gdf11 gene transfer restores glucose metabolism and improves insulin resistance. Mechanism study reveals that Gdf11 gene transfer increases the energy expenditure of mice, upregulates the expression of genes responsible for thermoregulation in brown adipose tissue, downregulates the expression of inflammatory genes in white adipose tissue and those involved in hepatic lipid and glucose metabolism. Overexpression of GDF11 also activates TGF-β/Smad2, PI3K/AKT/FoxO1, and AMPK signaling pathways in white adipose tissue. Conclusions These results demonstrate that GDF11 plays an important role in regulating metabolic homeostasis and energy balance and could be a target for pharmacological intervention to treat metabolic disease.


Endocrinology ◽  
2005 ◽  
Vol 146 (10) ◽  
pp. 4545-4554 ◽  
Author(s):  
Gabor Voros ◽  
Erik Maquoi ◽  
Diego Demeulemeester ◽  
Natalie Clerx ◽  
Désiré Collen ◽  
...  

Development of vasculature and mRNA expression of 17 pro- or antiangiogenic factors were studied during adipose tissue development in nutritionally induced or genetically determined murine obesity models. Subcutaneous (SC) and gonadal (GON) fat pads were harvested from male C57Bl/6 mice kept on standard chow [standard fat diet (SFD)] or on high-fat diet for 0–15 wk and from male ob/ob mice kept on SFD. Ob/ob mice and C57Bl/6 mice on high-fat diet had significantly larger SC and GON fat pads, accompanied by significantly higher blood content, increased total blood vessel volume, and higher number of proliferating cells. mRNA and protein levels of angiopoietin (Ang)-1 were down-regulated, whereas those of thrombospondin-1 were up-regulated in developing adipose tissue in both obesity models. Ang-1 mRNA levels correlated negatively with adipose tissue weight in the early phase of nutritionally induced obesity as well as in genetically determined obesity. Placental growth factor and Ang-2 expression were increased in SC adipose tissue of ob/ob mice, and thrombospondin-2 was increased in both their SC and GON fat pads. mRNA levels of vascular endothelial growth factor (VEGF)-A isoforms VEGF-B, VEGF-C, VEGF receptor-1, -2, and -3, and neuropilin-1 were not markedly modulated by obesity. This modulation of angiogenic factors during development of adipose tissue supports their important functional role in obesity.


2019 ◽  
Vol 43 (7) ◽  
pp. S42
Author(s):  
Stepheny C. De Campos Zani ◽  
Forough Jahandideh ◽  
Jianping Wu ◽  
Catherine B. Chan

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Sung Hee Kim ◽  
Mi Jeong Sung ◽  
Jae Ho Park ◽  
Hye Jeong Yang ◽  
Jin-Taek Hwang

We examined the antidiabetic property ofBoehmeria nivea(L.) Gaud. Ethanolic extract ofBoehmeria nivea(L.) Gaud. (EBN) increased the uptake of 2-[N-(nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose in C2C12 myotubes. To examine the mechanisms underlying EBN-mediated increase in glucose uptake, we examined the transcriptional activity and expression of peroxisome proliferator-activated receptor gamma (PPAR-γ), a pivotal target for glucose metabolism in C2C12 myotubes. We found that the EBN increased both the transcriptional activity and mRNA expression levels of PPAR-γ. In addition, we measured phosphorylation and expression levels of other targets of glucose metabolism, such as AMP-activated protein kinase (AMPK) and protein kinase B (Akt/PKB). We found that EBN did not alter the phosphorylation or expression levels of these proteins in a time- or dose-dependent manner, which suggested that EBN stimulates glucose uptake through a PPAR-γ-dependent mechanism. Further, we investigated the antidiabetic property of EBN using mice fed a high-fat diet (HFD). Administration of 0.5% EBN reduced the HFD-induced increase in body weight, total cholesterol level, and fatty liver and improved the impaired fasting glucose level, blood insulin content, and glucose intolerance. These results suggest that EBN had an antidiabetic effect in cell culture and animal systems and may be useful for preventing diabetes.


Sign in / Sign up

Export Citation Format

Share Document