scholarly journals Evidence for involvement of 3'-untranslated region in determining angiotensin II receptor coupling specificity to G-protein

2003 ◽  
Vol 370 (2) ◽  
pp. 631-639 ◽  
Author(s):  
Thomas J. THEKKUMKARA ◽  
Stuart L. LINAS

The mRNA 3′-untranslated region (3′-UTR) of many genes has been identified as an important regulator of the mRNA transcript itself as well as the translated product. Previously, we demonstrated that Chinese-hamster ovary-K1 cells stably expressing angiotensin receptor subtypes (AT1A) with and without 3′-UTR differed in AT1A mRNA content and its coupling with intracellular signalling pathways. Moreover, RNA mobility-shift assay and UV cross-linking studies using the AT1A 3′-UTR probe identified a major mRNA-binding protein complex of 55kDa in Chinese-hamster ovary-K1 cells. In the present study, we have determined the functional significance of the native AT1A receptor 3′-UTR in rat liver epithelial (WB) cell lines by co-expressing the AT1A 3′-UTR sequence ‘decoy’ to compete with the native receptor 3′-UTR for its mRNA-binding proteins. PCR analysis using specific primers for the AT1A receptor and [125I]angiotensin II (AngII)-binding studies demonstrated the expression of the native AT1A receptors in WB (Bmax = 2.7pmol/mg of protein, Kd = 0.56nM). Northern-blot analysis showed a significant increase in native receptor mRNA expression in 3′-UTR decoy-expressing cells, confirming the role of 3′-UTR in mRNA destabilization. Compared with vehicle control, AngII induced DNA and protein synthesis in wild-type WB as measured by [3H]thymidine and [3H]leucine incorporation respectively. Activation of [3H]thymidine and [3H]leucine correlated with a significant increase in cell number (cellular hyperplasia). In these cells, AngII stimulated GTPase activity by AT1 receptor coupling with G-protein αi. We also delineated that functional coupling of AT1A receptor with G-protein αi is an essential mechanism for AngII-mediated cellular hyperplasia in WB by specifically blocking G-protein αi activation. In contrast with wild-type cells, stable expression of the 3′-UTR ‘decoy’ produced AngII-stimulated protein synthesis and cellular hypertrophy as demonstrated by a significant increase in [3H]leucine incorporation and no increase in [3H]thymidine incorporation and cell number. Furthermore, [125I]AngII cross-linking and immunoprecipitation studies using specific G-protein α antibodies showed that in wild-type cells, the AT1A receptor coupled with G-protein αi, whereas in cells expressing the 3′-UTR ‘decoy’, the AT1A receptor coupled with G-protein αq. These findings indicate that the 3′-UTR-mediated changes in receptor function may be mediated in part by a switch from G-protein αi to G-protein αq coupling of the receptor. Our results suggest that the 3′-UTR-mediated post-transcriptional modification of the AT1A receptor is critical for regulating tissue-specific receptor functions.

1998 ◽  
Vol 12 (10) ◽  
pp. 1513-1524 ◽  
Author(s):  
Walter G. Thomas ◽  
Thomas J. Motel ◽  
Christopher E. Kule ◽  
Vijay Karoor ◽  
Kenneth M. Baker

Abstract The molecular mechanism of angiotensin II type I receptor (AT1) endocytosis is obscure, although the identification of an important serine/threonine rich region (Thr332Lys333Met334Ser335Thr336Leu337Ser338) within the carboxyl terminus of the AT1A receptor subtype suggests that phosphorylation may be involved. In this study, we examined the phosphorylation and internalization of full-length AT1A receptors and compared this to receptors with truncations and mutations of the carboxyl terminus. Epitope-tagged full-length AT1A receptors, when transiently transfected in Chinese hamster ovary (CHO)-K1 cells, displayed a basal level of phosphorylation that was significantly enhanced by angiotensin II (Ang II) stimulation. Phosphorylation of AT1A receptors was progressively reduced by serial truncation of the carboxyl terminus, and truncation to Lys325, which removed the last 34 amino acids, almost completely inhibited Ang II-stimulated 32P incorporation into the AT1A receptor. To investigate the correlation between receptor phosphorylation and endocytosis, an epitope-tagged mutant receptor was produced, in which the carboxyl-terminal residues, Thr332, Ser335, Thr336, and Ser338, previously identified as important for receptor internalization, were substituted with alanine. Compared with the wild-type receptor, this mutant displayed a clear reduction in Ang II-stimulated phosphorylation. Such a correlation was further strengthened by the novel observation that the Ang II peptide antagonist, Sar1Ile8-Ang II, which paradoxically causes internalization of wild-type AT1A receptors, also promoted their phosphorylation. In an attempt to directly relate phosphorylation of the carboxyl terminus to endocytosis, the internalization kinetics of wild-type AT1A receptors and receptors mutated within the Thr332-Ser338 region were compared. The four putative phosphorylation sites (Thr332, Ser335, Thr336, and Ser338) were substituted with either neutral [alanine (A)] or acidic amino acids [glutamic acid (E) and aspartic acid (D)], the former to prevent phosphorylation and the latter to reproduce the acidic charge created by phosphorylation. Wild-type AT1A receptors, expressed in Chinese hamster ovary cells, rapidly internalized after Ang II stimulation [t1/2 2.3 min; maximal level of internalization (Ymax) 78.2%], as did mutant receptors carrying single acidic substitutions (T332E, t1/2 2.7 min, Ymax 76.3%; S335D, t1/2 2.4 min, Ymax 76.7%; T336E, t1/2 2.5 min, Ymax 78.2%; S338D, t1/2 2.6 min, Ymax 78.4%). While acidic amino acid substitutions may simply be not as structurally disruptive as alanine mutations, we interpret the tolerance of a negative charge in this region as suggestive that phosphorylation may permit maximal internalization. Substitution of all four residues to alanine produced a receptor with markedly reduced internalization kinetics (T332A/S335A/T336A/S338A, t1/2 10.1 min, Ymax 47.9%), while endocytosis was significantly rescued in the corresponding quadruple acidic mutant (T332E/S335D/T336E/S338D, t1/2 6.4 min, Ymax 53.4%). Double mutation of S335 and T336 to alanine also diminished the rate and extent of endocytosis (S335A/T336A, 3.9 min, Ymax 69.3%), while the analogous double acidic mutant displayed wild type-like endocytotic parameters (S335D/T336E, t1/2 2.6 min, Ymax 77.5%). Based on the apparent rescue of internalization by acidic amino acid substitutions in a region that we have identified as a site of Ang II-induced phosphorylation, we conclude that maximal endocytosis of the AT1A receptor requires phosphorylation within this serine/threonine-rich segment of the carboxyl terminus.


1994 ◽  
Vol 14 (12) ◽  
pp. 7867-7875 ◽  
Author(s):  
R Simon ◽  
J D Richter

Early development in Xenopus laevis is programmed in part by maternally inherited mRNAs that are synthesized and stored in the growing oocyte. During oocyte maturation, several of these messages are translationally activated by poly(A) elongation, which in turn is regulated by two cis elements in the 3' untranslated region, the hexanucleotide AAUAAA and a cytoplasmic polyadenylation element (CPE) consisting of UUUUUAU or similar sequence. In the early embryo, a different set of maternal mRNAs is translationally activated. We have shown previously that one of these, C12, requires a CPE consisting of at least 12 uridine residues, in addition to the hexanucleotide, for its cytoplasmic polyadenylation and subsequent translation (R. Simon, J.-P. Tassan, and J.D. Richter, Genes Dev. 6:2580-2591, 1992). To assess whether this embryonic CPE functions in other maternal mRNAs, we have chosen Cl1 RNA, which is known to be polyadenylated during early embryogenesis (J. Paris, B. Osborne, A. Couturier, R. LeGuellec, and M. Philippe, Gene 72:169-176, 1988). Wild-type as well as mutated versions of Cl1 RNA were injected into fertilized eggs and were analyzed for cytoplasmic polyadenylation at times up to the gastrula stage. This RNA also required a poly(U) CPE for cytoplasmic polyadenylation in embryos, but in this case the CPE consisted of 18 uridine residues. In addition, the timing and extent of cytoplasmic poly(A) elongation during early embryogenesis were dependent upon the distance between the CPE and the hexanucleotide. Further, as was the case with Cl2 RNA, Cl1 RNA contains a large masking element that prevents premature cytoplasmic polyadenylation during oocyte maturation. To examine the factors that may be involved in the cytoplasmic polyadenylation of both C12 and C11 RNAs, we performed UV cross-linking experiments in egg extracts. Two proteins with sizes of ~36 and ~45 kDa interacted specifically with the CPEs of both RNAs, although they bound preferentially to the C12 CPE. The role that these proteins might play in cytoplasmic polyadenylation is discussed.


1984 ◽  
Vol 99 (1) ◽  
pp. 248-259 ◽  
Author(s):  
J E Rothman ◽  
L J Urbani ◽  
R Brands

Mixed monolayers containing vesicular stomatitis virus-infected Chinese hamster ovary clone 15B cells (lacking UDP-N-acetylglucosamine transferase I, a Golgi enzyme) and uninfected wild-type Chinese hamster ovary cells were formed. Extensive cell fusion occurs after the monolayer is exposed to a pH of 5.0. The vesicular stomatitis virus encoded membrane glycoprotein (G protein) resident in the rough endoplasmic reticulum (labeled with [35S]methionine) or Golgi complex (labeled with [3H]palmitate) of 15B cells at the time of fusion can reach Golgi complexes from wild-type cells after fusion; G protein present in the plasma membrane cannot. Transfer to wild-type Golgi complexes is monitored by the conversion of G protein to an endoglycosidase H-resistant form upon arrival, and also demonstrated by immunofluorescence microscopy. G protein in the Golgi complex of the 15B cells at the time of fusion exhibits properties vis a vis its transfer to an exogenous Golgi population identical to those found earlier in a cell-free system (Fries, E., and J. E. Rothman. 1981. J. Cell Biol., 90: 697-704). Specifically, pulse-chase experiments using the in vivo fusion and in vitro assays reveal the same two populations of G protein in the Golgi complex. The first population, consisting of G protein molecules that have just received their fatty acid, can transfer to a second Golgi population in vivo and in vitro. The second population, entered by G protein approximately 5 min after its acylation, is unavailable for this transfer, in vivo and in vitro. Presumably, this second population consists of those G-protein molecules that had already been transferred between compartments within the 15B Golgi population, in an equivalent process before cell fusion or homogenization for in vitro assays. Evidently, the same compartment boundary in the Golgi complex is detected by these two measurements. The surprisingly facile process of glycoprotein transit between Golgi stacks that occurs in vivo may therefore be retained in vitro, providing a basis for the cell-free system.


1994 ◽  
Vol 14 (12) ◽  
pp. 7867-7875
Author(s):  
R Simon ◽  
J D Richter

Early development in Xenopus laevis is programmed in part by maternally inherited mRNAs that are synthesized and stored in the growing oocyte. During oocyte maturation, several of these messages are translationally activated by poly(A) elongation, which in turn is regulated by two cis elements in the 3' untranslated region, the hexanucleotide AAUAAA and a cytoplasmic polyadenylation element (CPE) consisting of UUUUUAU or similar sequence. In the early embryo, a different set of maternal mRNAs is translationally activated. We have shown previously that one of these, C12, requires a CPE consisting of at least 12 uridine residues, in addition to the hexanucleotide, for its cytoplasmic polyadenylation and subsequent translation (R. Simon, J.-P. Tassan, and J.D. Richter, Genes Dev. 6:2580-2591, 1992). To assess whether this embryonic CPE functions in other maternal mRNAs, we have chosen Cl1 RNA, which is known to be polyadenylated during early embryogenesis (J. Paris, B. Osborne, A. Couturier, R. LeGuellec, and M. Philippe, Gene 72:169-176, 1988). Wild-type as well as mutated versions of Cl1 RNA were injected into fertilized eggs and were analyzed for cytoplasmic polyadenylation at times up to the gastrula stage. This RNA also required a poly(U) CPE for cytoplasmic polyadenylation in embryos, but in this case the CPE consisted of 18 uridine residues. In addition, the timing and extent of cytoplasmic poly(A) elongation during early embryogenesis were dependent upon the distance between the CPE and the hexanucleotide. Further, as was the case with Cl2 RNA, Cl1 RNA contains a large masking element that prevents premature cytoplasmic polyadenylation during oocyte maturation. To examine the factors that may be involved in the cytoplasmic polyadenylation of both C12 and C11 RNAs, we performed UV cross-linking experiments in egg extracts. Two proteins with sizes of ~36 and ~45 kDa interacted specifically with the CPEs of both RNAs, although they bound preferentially to the C12 CPE. The role that these proteins might play in cytoplasmic polyadenylation is discussed.


Pathology ◽  
1993 ◽  
Vol 25 (3) ◽  
pp. 268-276 ◽  
Author(s):  
Wanda B. Mackinnon ◽  
Marlen Dyne ◽  
Rebecca Hancock ◽  
Carolyn E. Mountford ◽  
Adrienne J. Grant ◽  
...  

Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 437-446 ◽  
Author(s):  
Lisa Girard ◽  
Michael Freeling

Abstract Insertions of Mutator transposons into maize genes can generate suppressible alleles. Mu suppression is when, in the absence of Mu activity, the phenotype of a mutant allele reverts to that of its progenitor. Here we present the characterization of five dominant Mu-suppressible alleles of the knox (knotted1-like homeobox) genes liguleless3 and rough sheath1, which exhibit neomorphic phenotypes in the leaves. RNA blot analysis suggests that Mu suppression affects only the neomorphic aspect of the allele, not the wild-type aspect. Additionally, Mu suppression appears to be exerting its effects at the level of transcription or transcript accumulation. We show that truncated transcripts are produced by three alleles, implying a mechanism for Mu suppression of 5′ untranslated region insertion alleles distinct from that which has been described previously. Additionally, it is found that Mu suppression can be caused by at least three different types of Mutator elements. Evidence presented here suggests that whether an allele is suppressible or not may depend upon the site of insertion. We cite previous work on the knox gene kn1, and discuss our results in the context of interactions between Mu-encoded products and the inherently negative regulation of neomorphic liguleless3 and rough sheath1 transcription.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Serina Yokoyama ◽  
Tatsuo Kawai ◽  
Koichi Yamamoto ◽  
Huang Yibin ◽  
Hiroko Yamamoto ◽  
...  

AbstractThe receptor for advanced glycation end-products (RAGE) and the G protein-coupled angiotensin II (AngII) type I receptor (AT1) play a central role in cardiovascular diseases. It was recently reported that RAGE modifies AngII-mediated AT1 activation via the membrane oligomeric complex of the two receptors. In this study, we investigated the presence of the different directional crosstalk in this phenomenon, that is, the RAGE/AT1 complex plays a role in the signal transduction pathway of RAGE ligands. We generated Chinese hamster ovary (CHO) cells stably expressing RAGE and AT1, mutated AT1, or AT2 receptor. The activation of two types of G protein α-subunit, Gq and Gi, was estimated through the accumulation of inositol monophosphate and the inhibition of forskolin-induced cAMP production, respectively. Rat kidney epithelial cells were used to assess RAGE ligand-induced cellular responses. We determined that RAGE ligands activated Gi, but not Gq, only in cells expressing RAGE and wildtype AT1. The activation was inhibited by an AT1 blocker (ARB) as well as a RAGE inhibitor. ARBs inhibited RAGE ligand-induced ERK phosphorylation, NF-κB activation, and epithelial–mesenchymal transition of rat renal epithelial cells. Our findings suggest that the activation of AT1 plays a central role in RAGE-mediated cellular responses and elucidate the role of a novel molecular mechanism in the development of cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document