scholarly journals Ceramide sensitizes astrocytes to oxidative stress: protective role of cannabinoids

2004 ◽  
Vol 380 (2) ◽  
pp. 435-440 ◽  
Author(s):  
Arkaitz CARRACEDO ◽  
Math J. H. GEELEN ◽  
María DIEZ ◽  
Kentaro HANADA ◽  
Manuel GUZMÁN ◽  
...  

Cannabinoids induce apoptosis on glioma cells via stimulation of ceramide synthesis de novo, whereas they do not affect viability of primary astrocytes. In the present study, we show that incubation with Δ9-tetrahydrocannabinol did not induce accumulation of ceramide on astrocytes, although incubation of these cells in a serum-free medium (with or without cannabinoids) led to stimulation of ceramide synthesis de novo and sensitization to oxidative stress. Thus treatment with H2O2 induced apoptosis of 5-day-serum-deprived astrocytes and this effect was abrogated by pharmacological blockade of ceramide synthesis de novo. The sensitizing effect of ceramide accumulation may depend on p38 mitogen-activated protein kinase activation rather than on other ceramide targets. Finally, a protective role of cannabinoids on astrocytes is shown as a long-term incubation with cannabinoids prevented H2O2-induced loss of viability in a CB1 receptor-dependent manner. In summary, our results show that whereas challenge of glioma cells with cannabinoids induces accumulation of de novo-synthesized ceramide and apoptosis, long-term treatment of astrocytes with these compounds does not stimulate this pathway and also abrogates the sensitizing effects of ceramide accumulation.

2019 ◽  
Vol 93 (7) ◽  
Author(s):  
Nadia Soudani ◽  
Rouba Hage-Sleiman ◽  
Walid Karam ◽  
Ghassan Dbaibo ◽  
Hassan Zaraket

ABSTRACT Annual influenza outbreaks are associated with significant morbidity and mortality worldwide despite the availability of seasonal vaccines. Influenza pathogenesis depends on the manipulation of host cell signaling to promote virus replication. Ceramide is a sphingosine-derived lipid that regulates diverse cellular processes. Studies highlighted the differential role of ceramide de novo biosynthesis on the propagation of various viruses. Whether ceramide plays, a role in influenza virus replication is not known. In this study, we assessed the potential interplay between the influenza A (IAV) and ceramide biosynthesis pathways. The accumulation of ceramide in human lung epithelial cells infected with influenza A/H1N1 virus strains was evaluated using thin-layer chromatography and/or confocal microscopy. Virus replication was assessed upon the regulation of the de novo ceramide biosynthesis pathway. A significant increase in ceramide accumulation was observed in cells infected with IAV in a dose- and time-dependent manner. Inoculating the cells with UV-inactivated IAV did not result in ceramide accumulation in the cells, suggesting that the induction of ceramide required an active virus replication. Inhibiting de novo ceramide significantly decreased ceramide accumulation and enhanced virus replication. The addition of exogenous C6-ceramide prior to infection mediated an increase in cellular ceramide levels and significantly attenuated IAV replication and reduced viral titers (≈1 log10 PFU/ml unit). Therefore, our data demonstrate that ceramide accumulation through de novo biosynthesis pathway plays a protective and antiviral role against IAV infection. These findings propose new avenues for development of antiviral molecules and strategies. IMPORTANCE Understanding the effect of sphingolipid metabolism on viral pathogenesis provide important insights into the development of therapeutic strategies against microbial infections. In this study, we demonstrate a critical role of ceramide during influenza A virus infection. We demonstrate that ceramide produced through de novo biosynthesis possess an antiviral role. These observations unlock new opportunities for the development of novel antiviral therapies against influenza.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Beibei Zhang ◽  
Xiaoying Wu ◽  
Jing Li ◽  
An Ning ◽  
Bo Zhang ◽  
...  

Abstract Background Hepatic schistosomiasis, a chronic liver injury induced by long-term Schistosoma japonicum (S. japonicum) infection, is characterized by egg granulomas and fibrotic pathology. Hepatic progenitor cells (HPCs), which are nearly absent or quiescent in normal liver, play vital roles in chronic and severe liver injury. But their role in the progression of liver injury during infection remains unknown. Methods In this study, the hepatic egg granulomas, fibrosis and proliferation of HPCs were analyzed in the mice model of S. japonicum infection at different infectious stages. For validating the role of HPCs in hepatic injury, tumor necrosis factor-like-weak inducer of apoptosis (TWEAK) and TWEAK blocking antibody were used to manipulate the proliferation of HPCs in wild-type and IL-33−/− mice infected with S. japonicum. Results We found that the proliferation of HPCs was accompanied by inflammatory granulomas and fibrosis formation. HPCs expansion promoted liver regeneration and inhibited inflammatory egg granulomas, as well as the deposition of fibrotic collagen. Interestingly, the expression of IL-33 was negatively associated with HPCs’ expansion. There were no obvious differences of liver injury caused by infection between wild-type and IL-33−/− mice with HPCs’ expansion. However, liver injury was more attenuated in IL-33−/− mice than wild-type mice when the proliferation of HPCs was inhibited by anti-TWEAK. Conclusions Our data uncovered a protective role of HPCs in hepatic schistosomiasis in an IL-33-dependent manner, which might provide a promising progenitor cell therapy for hepatic schistosomiasis.


2020 ◽  
Vol 9 (Suppl. 1) ◽  
pp. 40-50
Author(s):  
Giulia Lanzolla ◽  
Claudio Marcocci ◽  
Michele Marinò

Oxidative stress is involved in the pathogenesis of Graves hyperthyroidism (GH) and Graves orbitopathy (GO) and an antioxidant approach has been proposed for both. In GH, a disbalance of the cell redox state is associated with thyroid hyperfunction and antithyroid medications may reduce oxidative stress. Tissue hypoxia participates in the pathogenesis of GO, and oxygen free radicals are involved in the typical changes of orbital tissues as reported by in vitro and clinical studies. Antioxidant agents, especially selenium, have been proposed as a therapeutic option for GH and GO. A clinical study regarding the use of selenium in mild GO has provided evidence for a beneficial effect in the short term, even though its beneficial effects in the long term are still to be investigated. In addition to selenium, a protective role of other antioxidant agents, i.e., quercetin, enalapril, vitamin C, <i>N</i>-acetyl-L-cysteine and melatonin has been suggested by in vitro studies, although clinical studies are lacking. Here, we review the role of oxidative stress and antioxidant agents in GH and GO.


2021 ◽  
Author(s):  
Yoo Jin Shin ◽  
Sun Woo Lim ◽  
Sheng Cui ◽  
Eun Jeong Ko ◽  
Byung Ha Chung ◽  
...  

Abstract The influence of long-term tacrolimus treatment on cognitive function remains to be elucidated. Using chronic tacrolimus neurotoxicity in mice, we evaluated the influence of tacrolimus on cognitive function, synaptic balance, its regulating protein (Klotho), and oxidative stress in the hippocampus. Compared to vehicle-treated mice, tacrolimus-treated mice showed significantly decreased hippocampal-dependent spatial learning and memory function. Furthermore, tacrolimus caused synaptic imbalance as demonstrated by decreased excitatory synapses and increased inhibitory synapses, and downregulated Klotho in a dose-dependent manner; its downregulation was localized to excitatory hippocampal synapses. Moreover, tacrolimus increased oxidative stress and was associated with the activation of the PI3K/AKT pathway in the hippocampus. The present results indicate that tacrolimus impairs cognitive function via synaptic imbalance, and that these processes are associated with Klotho downregulation at synapses through tacrolimus-induced oxidative stress in the hippocampus.


2021 ◽  
Vol 22 (15) ◽  
pp. 7765
Author(s):  
Youichirou Higashi ◽  
Takaaki Aratake ◽  
Takahiro Shimizu ◽  
Shogo Shimizu ◽  
Motoaki Saito

Stroke is a major cause of death worldwide, leading to serious disability. Post-ischemic injury, especially in the cerebral ischemia-prone hippocampus, is a serious problem, as it contributes to vascular dementia. Many studies have shown that in the hippocampus, ischemia/reperfusion induces neuronal death through oxidative stress and neuronal zinc (Zn2+) dyshomeostasis. Glutathione (GSH) plays an important role in protecting neurons against oxidative stress as a major intracellular antioxidant. In addition, the thiol group of GSH can function as a principal Zn2+ chelator for the maintenance of Zn2+ homeostasis in neurons. These lines of evidence suggest that neuronal GSH levels could be a key factor in post-stroke neuronal survival. In neurons, excitatory amino acid carrier 1 (EAAC1) is involved in the influx of cysteine, and intracellular cysteine is the rate-limiting substrate for the synthesis of GSH. Recently, several studies have indicated that cysteine uptake through EAAC1 suppresses ischemia-induced neuronal death via the promotion of hippocampal GSH synthesis in ischemic animal models. In this article, we aimed to review and describe the role of GSH in hippocampal neuroprotection after ischemia/reperfusion, focusing on EAAC1.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor Lavrov ◽  
Timur Latypov ◽  
Elvira Mukhametova ◽  
Brian Lundstrom ◽  
Paola Sandroni ◽  
...  

AbstractElectrical stimulation of the cerebral cortex (ESCC) has been used to treat intractable neuropathic pain for nearly two decades, however, no standardized approach for this technique has been developed. In order to optimize targeting and validate the effect of ESCC before placing the permanent grid, we introduced initial assessment with trial stimulation, using a temporary grid of subdural electrodes. In this retrospective study we evaluate the role of electrode location on cerebral cortex in control of neuropathic pain and the role of trial stimulation in target-optimization for ESCC. Location of the temporary grid electrodes and location of permanent electrodes were evaluated in correlation with the long-term efficacy of ESCC. The results of this study demonstrate that the long-term effect of subdural pre-motor cortex stimulation is at least the same or higher compare to effect of subdural motor or combined pre-motor and motor cortex stimulation. These results also demonstrate that the initial trial stimulation helps to optimize permanent electrode positions in relation to the optimal functional target that is critical in cases when brain shift is expected. Proposed methodology and novel results open a new direction for development of neuromodulation techniques to control chronic neuropathic pain.


2018 ◽  
Vol 115 (14) ◽  
pp. 3698-3703 ◽  
Author(s):  
Xiaofan Jin ◽  
Ingmar H. Riedel-Kruse

Bacterial biofilms represent a promising opportunity for engineering of microbial communities. However, our ability to control spatial structure in biofilms remains limited. Here we engineerEscherichia coliwith a light-activated transcriptional promoter (pDawn) to optically regulate expression of an adhesin gene (Ag43). When illuminated with patterned blue light, long-term viable biofilms with spatial resolution down to 25 μm can be formed on a variety of substrates and inside enclosed culture chambers without the need for surface pretreatment. A biophysical model suggests that the patterning mechanism involves stimulation of transiently surface-adsorbed cells, lending evidence to a previously proposed role of adhesin expression during natural biofilm maturation. Overall, this tool—termed “Biofilm Lithography”—has distinct advantages over existing cell-depositing/patterning methods and provides the ability to grow structured biofilms, with applications toward an improved understanding of natural biofilm communities, as well as the engineering of living biomaterials and bottom–up approaches to microbial consortia design.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 160
Author(s):  
Vladana Domazetovic ◽  
Irene Falsetti ◽  
Caterina Viglianisi ◽  
Kristian Vasa ◽  
Cinzia Aurilia ◽  
...  

Vitamin E, a fat-soluble compound, possesses both antioxidant and non-antioxidant properties. In this study we evaluated, in intestinal HT29 cells, the role of natural tocopherols, α-Toc and δ-Toc, and two semi-synthetic derivatives, namely bis-δ-Toc sulfide (δ-Toc)2S and bis-δ-Toc disulfide (δ-Toc)2S2, on TNFα-induced oxidative stress, and intercellular adhesion molecule-1 (ICAM-1) and claudin-2 (Cl-2) expression. The role of tocopherols was compared to that of N-acetylcysteine (NAC), an antioxidant precursor of glutathione synthesis. The results show that all tocopherol containing derivatives used, prevented TNFα-induced oxidative stress and the increase of ICAM-1 and Cl-2 expression, and that (δ-Toc)2S and (δ-Toc)2S2 are more effective than δ-Toc and α-Toc. The beneficial effects demonstrated were due to tocopherol antioxidant properties, but suppression of TNFα-induced Cl-2 expression seems not only to be related with antioxidant ability. Indeed, while ICAM-1 expression is strongly related to the intracellular redox state, Cl-2 expression is TNFα-up-regulated by both redox and non-redox dependent mechanisms. Since ICAM-1 and Cl-2 increase intestinal bowel diseases, and cause excessive recruitment of immune cells and alteration of the intestinal barrier, natural and, above all, semi-synthetic tocopherols may have a potential role as a therapeutic support against intestinal chronic inflammation, in which TNFα represents an important proinflammatory mediator.


Sign in / Sign up

Export Citation Format

Share Document