scholarly journals The antagonistic regulation of human MUC4 and ErbB-2 genes by the Ets protein PEA3 in pancreatic cancer cells: implications for the proliferation/differentiation balance in the cells

2005 ◽  
Vol 386 (1) ◽  
pp. 35-45 ◽  
Author(s):  
Valérie FAUQUETTE ◽  
Michael PERRAIS ◽  
Sylvain CERULIS ◽  
Nicolas JONCKHEERE ◽  
Marie-Paule DUCOUROUBLE ◽  
...  

The human transmembrane mucin MUC4 is aberrantly expressed in 75% of pancreatic ductal adenocarcinomas, whereas no expression is found in normal pancreas. Therefore MUC4 appears as a useful biological marker for the diagnosis of ductal adenocarcinomas. Since rat Muc4 was shown to interact with ErbB-2 tyrosine kinase receptor and to either promote cell survival and differentiation or cell proliferation, it is postulated that MUC4 may also participate in pancreatic carcinogenesis. Our aim was to investigate in parallel the role of the Ets factor PEA3 in MUC4 and ErbB-2 transcriptional regulation in pancreatic cancer cells. Two MUC4-expressing WD (well-differentiated) (CAPAN-1 and -2) and one MUC4-non-expressing poorly differentiated (PANC-1) cell lines were used. The three cell lines express ErbB-2 at different levels. By co-transfection and site-directed mutagenesis, we show that PEA3 is a transactivator of the MUC4 promoter and that the −216 and −2368 PEA3 binding sites of the MUC4 promoter are essential. We also demonstrate that PEA3 acts in synergy with c-Jun and specificity protein 1 to transactivate the proximal region of the MUC4 promoter and increase MUC4 mRNA levels in WD cells. These results suggest that MUC4 is a new target gene of the Ets factor PEA3 in pancreatic cancer cells. In contrast, PEA3 represses the transcriptional activity of two fragments of the ErbB-2 promoter in a dose-dependent manner and decreases the endogenous ErbB-2 mRNA levels in WD cell lines. Thus, PEA3, by its capacity to up-regulate the epithelial marker MUC4 and to down-regulate the ErbB-2 oncogene, appears as a key regulator of the differentiation/proliferation balance in pancreatic cancer cells.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e15725-e15725
Author(s):  
Shengjun Ji

e15725 Background: Pancreatic cancer is an uncommon but fatal malignant tumor, only 20% of which show any significant response to chemo-radiotherapy. Tumor metabolism research revealed that pancreatic cancer cells highly dependent on cholesterol uptake. So, in the present study, we have determined the effectiveness of atorvastatin, one drug originally used to lower cholesterol, against pancreatic carcinogenesis in various pancreatic cancer cell lines. Methods: To investigate atorvastatin effects in pancreatic cancer cells, two cell lines (PANC-1 and SW1990) were treated with different atorvastatin doses. The anti-proliferative, apoptotic and anti-invasive properties of atorvastatin were evaluated using MTS, cytoplasmic histone-DNA fragmentation and matrigel invasive assays, respectively. And western blot was used to evaluate the neurotrophin receptor signaling of NGF/Trk A, BDNF/TrkB and NT3/Trk C. Results: Atorvastatin suppressed pancreatic cancer cells proliferation, clone formation and invasion in a dose-dependent manner. The dose of atorvastatin at 10^-5mmol/L would be able to achieve obvious anti-tumor effect in vitro. Cell-cycle analysis demonstrated that cells were arrested in the S phase. Western blot showed increased protein expression of cleaved caspase-3, caspase-9, p21, p-chk2 and decrease in protein level of NGF/Trk A and NT3/Trk C. Conclusions: The current results demonstrated the anti-tumor effects of atorvastatin on pancreatic cancer cells, providing initial evidence towards its potential therapeutic use. Acknowledgment:This study was supported by Suzhou Cancer Clinical Medical Center Szzx201506.


1991 ◽  
Vol 276 (3) ◽  
pp. 599-605 ◽  
Author(s):  
S Yonezawa ◽  
J C Byrd ◽  
R Dahiya ◽  
J J L Ho ◽  
J R Gum ◽  
...  

The purpose of this study was to determine the quantity and nature of the mucins synthesized and secreted by four different pancreatic cancer cell lines. Well- to moderately-differentiated SW1990 and CAPAN-2 human pancreatic cancer cells were found to produce more high-Mr glycoprotein (HMG) than less-differentiated MIA PaCa-2 and PANC-1 cells. Most of the labelled HMG was secreted within 24 h. The results of chemical and enzymic degradation, ion-exchange chromatography and density-gradient centrifugation indicated that the HMG in SW1990 and CAPAN-2 cells has the properties expected for mucins, whereas much of the HMG in MIA PaCa-2 and PANC-1 cells may not be mucin, but proteoglycan. These results are consistent with immunoblots and Northern blots showing the presence of apomucin and apomucin mRNA in SW1990 and CAPAN-2 cells, but not in MIA PaCa-2 and PANC-1 cells. The Western blots and Northern blots also show that SW1990 and CAPAN-2 cells, like breast cancer cells, have the mammary-type apomucin and mRNA coded by the MUC1 gene, but lack the intestinal type apomucin and mRNA coded by the MUC2 gene. In contrast, the colon cancer cell lines tested in culture express apomucin and mRNA coded by MUC2 but not by MUC1.


2019 ◽  
Author(s):  
Fatemeh Mazloumi Gavgani ◽  
Thomas Karlsson ◽  
Ingvild L Tangen ◽  
Andrea Papdiné Morovicz ◽  
Victoria Smith Arnesen ◽  
...  

AbstractGenes encoding for components of the phosphoinositide 3-kinase (PI3K) pathway are frequently mutated in cancer, including inactivating mutations of PTEN and activating mutations of PIK3CA, encoding the PI3K catalytic subunit p110α. PIK3CB, encoding p110β, is rarely mutated, but can contribute to tumourigenesis in some PTEN-deficient tumours. The underlying molecular mechanisms are however poorly understood. By analysing cell lines and annotated clinical samples, we have previously found that p110β is highly expressed in endometrial cancer (EC) cell lines and that PIK3CB mRNA levels increase early in primary tumours correlating with lower survival. Selective inhibition of p110α and p110β led to different effects on cell signalling and cell function, p110α activity being correlated to cell survival in PIK3CA mutant cells and p110β with cell proliferation in PTEN-deficient cells. To understand the mechanisms governing the differential roles of these isoforms, we assessed their sub-cellular localisation. p110α was cytoplasmic whereas p110β was both cytoplasmic and nuclear with increased levels in both compartments in cancer cells. Immunohistochemistry of p110β in clinically annotated patient tumour sections revealed high nuclear/cytoplasmic staining ratio, which correlated significantly with higher grades. Consistently, the presence of high levels of p110β in the nuclei of EC cells, correlated with high levels of its product phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) in the nucleus. Using immunofluorescence labelling, we observed both p110β and PtdIns(3,4,5)P3 in the nucleoli of EC cell lines. The production of nucleolar PtdIns(3,4,5)P3 was dependent upon p110β activity. EC cells with high levels of nuclear PtdIns(3,4,5)P3 and p110β showed elevated nucleolar activity as assessed by the increase in 47S pre-rRNA transcriptional levels in a p110β-dependent manner. Altogether, these results present a nucleolar role for the PI3K pathway that may contribute to tumour progression in endometrial cancer.


1994 ◽  
Vol 266 (1) ◽  
pp. R277-R283 ◽  
Author(s):  
J. P. Smith ◽  
G. Liu ◽  
V. Soundararajan ◽  
P. J. McLaughlin ◽  
I. S. Zagon

The gastrointestinal peptide cholecystokinin (CCK) is known to stimulate growth of human pancreatic cancer in a receptor-mediated fashion. The purpose of this study was to characterize the receptor responsible for the trophic effects of CCK in cancer cells. With the use of homogenates of PANC-1 human pancreatic cancer cells grown in vitro, the binding characteristics and optimal conditions of radiolabeled selective CCK-receptor antagonists ([3H]L-365,260 and [3H]L-364,718) were examined. Specific and saturable binding was detected with [3H]L-365,260, and Scatchard analysis revealed that the data were consistent for a single site of binding with a binding affinity of 4.3 +/- 0.6 nM and a binding capacity (Bmax) of 283 +/- 68 fmol/mg protein in log phase cells. Binding was dependent on protein concentration, time, temperature, and pH and was sensitive to Na+, K+, Mg2+, and ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. In contrast to log phase cells, Bmax decreased by 80 and 92% in confluent and postconfluent cultures, respectively. Subcellular fractionation studies revealed that binding was in the membrane fraction. Competition experiments indicated that L-365,260 and gastrin were more effective at displacing the radiolabeled L-365,260 than CCK. No binding was detected with the CCK-A antagonist [3H]L-364,718. Assays performed with [3H]L-365,260 on five additional human pancreatic cancer cell lines in vitro and tumor tissue from xenografts in nude mice also revealed specific and saturable binding. These results provide the first identification of a CCK-B/gastrin receptor in human pancreatic cancer cells and tumors and explain the effects of CCK on the growth of this malignancy.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3628
Author(s):  
Manoj Amrutkar ◽  
Nils Tore Vethe ◽  
Caroline S. Verbeke ◽  
Monica Aasrum ◽  
Anette Vefferstad Finstadsveen ◽  
...  

Gemcitabine resistance in pancreatic ductal adenocarcinoma (PDAC) is attributed to cancer cell-intrinsic drug processing and the impact of the tumor microenvironment, especially pancreatic stellate cells (PSCs). This study uses human PDAC-derived paired primary cancer cells (PCCs) and PSCs from four different tumors, and the PDAC cell lines BxPC-3, Mia PaCa-2, and Panc-1, to assess the fate of gemcitabine by measuring its cellular uptake, cytotoxicity, and LC-MS/MS-based metabolite analysis. Expression analysis and siRNA-mediated knockdown of key regulators of gemcitabine (hENT1, CDA, DCK, NT5C1A) was performed. Compared to PSCs, both the paired primary PCCs and cancer cell lines showed gemcitabine-induced dose-dependent cytotoxicity, high uptake, as well as high and variable intracellular levels of gemcitabine metabolites. PSCs were gemcitabine-resistant and demonstrated significantly lower drug uptake, which was not influenced by co-culturing with their paired PCCs. Expression of key gemcitabine regulators was variable, but overall strong in the cancer cells and significantly lower or undetectable in PSCs. In cancer cells, hENT1 inhibition significantly downregulated gemcitabine uptake and cytotoxicity, whereas DCK knockdown reduced cytotoxicity. In conclusion, heterogeneity in gemcitabine processing among different pancreatic cancer cells and stellate cells results from the differential expression of molecular regulators which determines the effect of gemcitabine.


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Elodie Roger ◽  
Sylvie Martel ◽  
Adrien Bertrand-Chapel ◽  
Arnaud Depollier ◽  
Nicolas Chuvin ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDAC) is one of the solid tumors with the poorest prognosis. The stroma of this tumor is abundant and composed of extracellular matrix and stromal cells (including cancer-associated fibroblasts and immune cells). Nerve fibers invading this stroma represent a hallmark of PDAC, involved in neural remodeling, which participates in neuropathic pain, cancer cell dissemination and tumor relapse after surgery. Pancreatic cancer-associated neural remodeling is regulated through functional interplays mediated by physical and molecular interactions between cancer cells, nerve cells and surrounding Schwann cells, and other stromal cells. In the present study, we show that Schwann cells (glial cells supporting peripheral neurons) can enhance aggressiveness (migration, invasion, tumorigenicity) of pancreatic cancer cells in a transforming growth factor beta (TGFβ)-dependent manner. Indeed, we reveal that conditioned medium from Schwann cells contains high amounts of TGFβ able to activate the TGFβ-SMAD signaling pathway in cancer cells. We also observed in human PDAC samples that high levels of TGFβ signaling activation were positively correlated with perineural invasion. Secretome analyses by mass spectrometry of Schwann cells and pancreatic cancer cells cultured alone or in combination highlighted the central role of TGFβ in neuro-epithelial interactions, as illustrated by proteomic signatures related to cell adhesion and motility. Altogether, these results demonstrate that Schwann cells are a meaningful source of TGFβ in PDAC, which plays a crucial role in the acquisition of aggressive properties by pancreatic cancer cells.


2005 ◽  
Vol 20 (4) ◽  
pp. 235-241 ◽  
Author(s):  
E. Greco ◽  
D. Basso ◽  
P. Fogar ◽  
S. Mazza ◽  
F. Navaglia ◽  
...  

Background We investigated in vitro whether IL-1β and TGF-β1 affect pancreatic cancer cell growth, adhesion to the extracellular matrix and Matrigel invasion. Materials and methods Adhesion to fibronectin, laminin and type I collagen, and Matrigel invasion after stimulation with saline, IL-1β and TGF-β1 were evaluated using three primary and three metastatic pancreatic cancer cell lines. Results Extracellular matrix adhesion of control cells varied independently of the metastatic characteristics of the studied cell lines, whereas Matrigel invasion of control cells was partly correlated with the in vivo metastatic potential. IL-1β did not influence extracellular matrix adhesion, whereas it significantly enhanced the invasiveness of three of the six cell lines. TGF-β1 affected the adhesion of one cell line, and exerted contrasting effects on Matrigel invasion of different cell lines. Conclusions IL-1β enhances the invasive capacity of pancreatic cancer cells, whereas TGF-β1 has paradoxical effects on pancreatic cancer cells; this makes it difficult to interfere with TGF-β1 signaling in pancreatic cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document