scholarly journals Activation of protein synthesis in cardiomyocytes by the hypertrophic agent phenylephrine requires the activation of ERK and involves phosphorylation of tuberous sclerosis complex 2 (TSC2)

2005 ◽  
Vol 388 (3) ◽  
pp. 973-984 ◽  
Author(s):  
Mark ROLFE ◽  
Laura E. McLEOD ◽  
Phillip F. PRATT ◽  
Christopher G. PROUD

The hypertrophic Gq-protein-coupled receptor agonist PE (phenylephrine) activates protein synthesis. We showed previously that activation of protein synthesis by PE requires MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] and mTOR (mammalian target of rapamycin). However, it remained unclear whether ERK activation was required and which downstream components were involved in activating mTOR and protein synthesis. Using an adenovirus encoding the MKP3 (MAPK phosphatase 3) to inhibit ERK activity, we demonstrate that ERK is essential for the activation of protein synthesis by PE. Activation and phosphorylation of S6K1 (ribosomal protein S6 kinase 1) and phosphorylation of eIF4E (eukaryotic initiation factor 4E)-binding protein (both are mTOR targets) were also inhibited by MKP3, suggesting that ERK is also required for the activation of mTOR signalling. PE stimulation of cardiomyocytes induced the phosphorylation of TSC2 (tuberous sclerosis complex 2), a negative regulator of mTOR activity. TSC2 was phosphorylated only weakly at Thr1462, but phosphorylated at additional sites within the sequence RXRXX(S/T). This differs from the phosphorylation induced by insulin, indicating that MEK/ERK signalling targets distinct sites in TSC2. This phosphorylation may be mediated by p90RSK (90 kDa ribosomal protein S6K), which is activated by ERK, and appears to involve phosphorylation at Ser1798. Activation of protein synthesis by PE is partially insensitive to the mTOR inhibitor rapamycin. Inhibition of the MAPK-interacting kinases by CGP57380 decreases the phosphorylation of eIF4E and PE-induced protein synthesis. Moreover, CGP57380+rapamycin inhibited protein synthesis to the same extent as blocking ERK activation, suggesting that MAPK-interacting kinases and regulation of mTOR each contribute to the activation of protein synthesis by PE in cardiomyocytes.

2009 ◽  
Vol 29 (15) ◽  
pp. 4250-4261 ◽  
Author(s):  
Marianne F. James ◽  
Sangyeul Han ◽  
Carolyn Polizzano ◽  
Scott R. Plotkin ◽  
Brendan D. Manning ◽  
...  

ABSTRACT Inactivating mutations of the neurofibromatosis 2 (NF2) gene, NF2, result predominantly in benign neurological tumors, schwannomas and meningiomas, in humans; however, mutations in murine Nf2 lead to a broad spectrum of cancerous tumors. The tumor-suppressive function of the NF2 protein, merlin, a membrane-cytoskeleton linker, remains unclear. Here, we identify the mammalian target of rapamycin complex 1 (mTORC1) as a novel mediator of merlin's tumor suppressor activity. Merlin-deficient human meningioma cells and merlin knockdown arachnoidal cells, the nonneoplastic cell counterparts of meningiomas, exhibit rapamycin-sensitive constitutive mTORC1 activation and increased growth. NF2 patient tumors and Nf2-deficient mouse embryonic fibroblasts demonstrate elevated mTORC1 signaling. Conversely, the exogenous expression of wild-type merlin isoforms, but not a patient-derived L64P mutant, suppresses mTORC1 signaling. Merlin does not regulate mTORC1 via the established mechanism of phosphoinositide 3-kinase-Akt or mitogen-activated protein kinase/extracellular signal-regulated kinase-mediated TSC2 inactivation and may instead regulate TSC/mTOR signaling in a novel fashion. In conclusion, the deregulation of mTORC1 activation underlies the aberrant growth and proliferation of NF2-associated tumors and may restrain the growth of these lesions through negative feedback mechanisms, suggesting that rapamycin in combination with phosphoinositide 3-kinase inhibitors may be therapeutic for NF2.


2019 ◽  
Vol 116 (8) ◽  
pp. 2977-2986 ◽  
Author(s):  
Rituraj Pal ◽  
Yan Xiong ◽  
Marco Sardiello

Tuberous sclerosis complex (TSC) is an autosomal dominant syndrome that causes tumor formation in multiple organs. TSC is caused by inactivating mutations in the genes encoding TSC1/2, negative regulators of the mammalian target of rapamycin complex 1 (mTORC1). Diminished TSC function is associated with excess glycogen storage, but the causative mechanism is unknown. By studying human and mouse cells with defective or absent TSC2, we show that complete loss of TSC2 causes an increase in glycogen synthesis through mTORC1 hyperactivation and subsequent inactivation of glycogen synthase kinase 3β (GSK3β), a negative regulator of glycogen synthesis. Specific TSC2 pathogenic mutations, however, result in elevated glycogen levels with no changes in mTORC1 or GSK3β activities. We identify mTORC1-independent lysosomal depletion and impairment of autophagy as the driving causes underlying abnormal glycogen storage in TSC irrespective of the underlying mutation. The defective autophagic degradation of glycogen is associated with abnormal ubiquitination and degradation of essential proteins of the autophagy-lysosome pathway, such as LC3 and lysosomal associated membrane protein 1 and 2 (LAMP1/2) and is restored by the combined use of mTORC1 and Akt pharmacological inhibitors. In complementation to current models that place mTORC1 as the central therapeutic target for TSC pathogenesis, our findings identify mTORC1-independent pathways that are dysregulated in TSC and that should therefore be taken into account in the development of a therapeutic treatment.


1998 ◽  
Vol 274 (1) ◽  
pp. C221-C228 ◽  
Author(s):  
Scot R. Kimball ◽  
Rick L. Horetsky ◽  
Leonard S. Jefferson

The phosphorylation states of three proteins implicated in the action of insulin on translation were investigated, i.e., 70-kDa ribosomal protein S6 kinase (p70 S6k ), eukaryotic initiation factor (eIF) 4E, and the eIF-4E binding protein 4E-BP1. Addition of insulin caused a stimulation of protein synthesis in L6 myoblasts in culture, an effect that was blocked by inhibitors of phosphatidylinositide-3-OH kinase (wortmannin), p70 S6k (rapamycin), and mitogen-activated protein kinase (MAP kinase) kinase (PD-98059). The stimulation of protein synthesis was accompanied by increased phosphorylation of p70 S6k , an effect that was blocked by rapamycin and wortmannin but not PD-98059. Insulin caused dephosphorylation of eIF-4E, an effect that appeared to be mediated by the p70 S6k pathway. Insulin also stimulated phosphorylation of 4E-BP1 as well as dissociation of the 4E-BP1 ⋅ eIF-4E complex. Both rapamycin and wortmannin completely blocked the insulin-induced changes in 4E-BP1 phosphorylation and association of 4E-BP1 and eIF-4E; PD-98059 had no effect on either parameter. Finally, insulin stimulated formation of the active eIF-4G ⋅ eIF-4E complex, an effect that was not prevented by any of the inhibitors. Overall, the results suggest that insulin stimulates protein synthesis in L6 myoblasts in part through utilization of both the p70 S6k and MAP kinase signal transduction pathways.


2011 ◽  
Vol 39 (2) ◽  
pp. 466-471 ◽  
Author(s):  
Romana Tomasoni ◽  
Anna Mondino

Mutations in genes encoding either hamartin [TSC1 (tuberous sclerosis complex 1)] or tuberin (TSC2) result in a multisystem disorder characterized by the development of benign tumours and hamartomas in several organs. The TSC1 and TSC2 proteins form a complex that lies at the crossroad of many signalling pathways integrating the energy status of the cell with signals induced by nutrients and growth factors. The TSC1/2 complex is a critical negative regulator of mTORC1 [mTOR (mammalian target of rapamycin) complex 1], and by that controls anabolic processes to promote cell growth, proliferation and survival. In the present paper, we review recent evidence highlighting the notion that the TSC1/2 complex simultaneously controls mTOR-dependent and mTOR-independent signals critical for the balancing of cell proliferation and cell death.


2011 ◽  
Vol 39 (2) ◽  
pp. 443-445 ◽  
Author(s):  
Lijun Yan ◽  
Richard F. Lamb

It is clear that mTORC1 (mammalian target of rapamycin complex 1) is regulated by the presence of ambient amino acid nutrients. However, the mechanism by which amino acids regulate mTORC1 is still open to question, despite extensive efforts. Our recent work has revealed that PR61ϵ, a B56 family regulatory subunit of PP2A (protein phosphatase 2A), associates with and regulates the activity of MAP4K3 (mitogen-activated protein kinase kinase kinase kinase 3), a protein kinase regulated by amino acid sufficiency that acts upstream of mTORC1. In searching for a physiological process regulated by amino acids, we have demonstrated recently that arginine plays a role in the activation of LPS (lipopolysaccharide)-induced MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK signalling in macrophages. PP2A similarly associates with the upstream regulator of MEK in this signalling pathway, TPL-2 (tumour progression locus-2), in response to arginine availability. Thus PP2A is a negative regulator of both MAP4K3 and TPL-2 in both mTORC1 and MEK/ERK signalling pathways.


2001 ◽  
Vol 21 (16) ◽  
pp. 5500-5511 ◽  
Author(s):  
Ursula Knauf ◽  
Claude Tschopp ◽  
Hermann Gram

ABSTRACT Eukaryotic initiation factor 4E (eIF4E) is a key component of the translational machinery and an important modulator of cell growth and proliferation. The activity of eIF4E is thought to be regulated by interaction with inhibitory binding proteins (4E-BPs) and phosphorylation by mitogen-activated protein (MAP) kinase-interacting kinase (MNK) on Ser209 in response to mitogens and cellular stress. Here we demonstrate that phosphorylation of eIF4E via MNK1 is mediated via the activation of either the Erk or p38 pathway. We further show that expression of active mutants of MNK1 and MNK2 in 293 cells diminishes cap-dependent translation relative to cap-independent translation in a transient reporter assay. The same effect on cap-dependent translation was observed when MNK1 was activated by the Erk or p38 pathway. In line with these findings, addition of recombinant active MNK1 to rabbit reticulocyte lysate resulted in a reduced protein synthesis in vitro, and overexpression of MNK2 caused a decreased rate of protein synthesis in 293 cells. By using CGP 57380, a novel low-molecular-weight kinase inhibitor of MNK1, we demonstrate that eIF4E phosphorylation is not crucial to the formation of the initiation complex, mitogen-stimulated increase in cap-dependent translation, and cell proliferation. Our results imply that activation of MNK by MAP kinase pathways does not constitute a positive regulatory mechanism to cap-dependent translation. Instead, we propose that the kinase activity of MNKs, eventually through phosphorylation of eIF4E, may serve to limit cap-dependent translation under physiological conditions.


2005 ◽  
Vol 25 (2) ◽  
pp. 819-829 ◽  
Author(s):  
Sandra Galic ◽  
Christine Hauser ◽  
Barbara B. Kahn ◽  
Fawaz G. Haj ◽  
Benjamin G. Neel ◽  
...  

ABSTRACT The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP−/− and PTP1B−/− immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR β-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B−/− MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP−/− MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B−/− MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell.


Sign in / Sign up

Export Citation Format

Share Document