scholarly journals Effects of peptide C corresponding to the Glu724–Pro760 region of the II–III loop of the DHP (dihydropyridine) receptor α1 subunit on the domain- switch-mediated activation of RyR1 (ryanodine receptor 1) Ca2+ channels

2006 ◽  
Vol 394 (1) ◽  
pp. 145-152 ◽  
Author(s):  
Mark L. Bannister ◽  
Noriaki Ikemoto

The Leu720–Leu764 region of the II–III loop of the dihydropyridine receptor is believed to be important for both orthograde and retrograde communications with the RyR (ryanodine receptor), but its actual role has not yet been resolved. Our recent studies suggest that voltage-dependent activation of the RyR channel is mediated by a pair of interacting N-terminal and central domains, designated as the ‘domain switch’. To investigate the effect of peptide C (a peptide corresponding to residues Glu724–Pro760) on domain- switch-mediated activation of the RyR, we measured Ca2+ release induced by DP (domain peptide) 1 or DP4 (which activates the RyR by mediation of the domain switch) and followed the Ca2+ release time course using a luminal Ca2+ probe (chlortetracycline) under Ca2+-clamped conditions. Peptide C produced a significant potentiation of the domain-switch-mediated Ca2+ release, provided that the Ca2+ concentration was sufficiently low (e.g. 0.1 μM) and the Ca2+ channel was only partially activated by the domain peptide. However, at micromolar Ca2+ concentrations, peptide C inhibits activation. Covalent cross-linking of fluorescently labelled peptide C to the RyR and screening of the fluorescently labelled tryptic fragments permitted us to localize the peptide-C-binding site to residues 450–1400, which may represent the primary region involved in physical coupling. Based on the above findings, we propose that the physiological role of residues Glu724–Pro760 is to facilitate depolarization-induced and domain-switch-mediated RyR activation at sub- or near-threshold concentrations of cytoplasmic Ca2+ and to suppress activation upon an increase of cytoplasmic Ca2+.

1997 ◽  
Vol 272 (4) ◽  
pp. C1178-C1185 ◽  
Author(s):  
L. Garcia ◽  
M. Fahmi ◽  
N. Prevarskaya ◽  
B. Dufy ◽  
P. Sartor

In pituitary cells, voltage-dependent Ca2+ channels play an important role in such physiological processes as exocytosis, secretion, the cell cycle, and proliferation. Thus mechanisms that modulate voltage-dependent Ca2+ channel activity participate indirectly in regulating intracellular Ca2+ concentration. We have shown a new modulating mechanism for voltage-dependent Ca2+ channels by demonstrating that Ca2+ influx is influenced by Cl-. To evaluate the role of Cl- on Ca2+ conductance coupling, we first measured the intracellular Cl- concentration of rat lactotrophs using the Cl(-)-sensitive fluorescence probe sulfopropylquinolinium by simple microspectrofluorometry or combined with electrophysiology. We found an average intracellular Cl- concentration of rat lactotrophs of approximately 60 mM (n = 39). Using the whole cell tight-seal recording technique, we showed that a reduction in external Cl- concentration ([Cl-]o) and a decrease in Cl- conductances affected Ca2+ conductance as measured by Ba2+ movement through the Ca2+ channels (I(Ba)). Low [Cl-]o (39 mM) induced a decrease in Ca2+ entry via voltage-gated Ca2+ channels (-27.75 +/- 4% of normalized I(Ba)). Similarly, blockade of the Cl- conductance by 1 mM 9-anthracene carboxylic acid induced a decrease in I(Ba) (-26 +/- 6% of normalized I(Ba)). This modulation of I(Ba) was inhibited by 24-h pretreatment of the cells with pertussis toxin (1 microg/ml), suggesting that changes in Cl- concentration induced by low [Cl-]o and 9-anthracene carboxylic acid interfered with the phosphorylation of G proteins involved in Ca2+ channel activation. These results suggest a feedback mechanism based on constant interaction between Ca2+ and Cl-. Finally, they also emphasize the physiological role of Cl- in rat lactotrophs.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alonso Zavafer ◽  
Ievgeniia Iermak ◽  
Mun Hon Cheah ◽  
Wah Soon Chow

AbstractThe quenching of chlorophyll fluorescence caused by photodamage of Photosystem II (qI) is a well recognized phenomenon, where the nature and physiological role of which are still debatable. Paradoxically, photodamage to the reaction centre of Photosystem II is supposed to be alleviated by excitation quenching mechanisms which manifest as fluorescence quenchers. Here we investigated the time course of PSII photodamage in vivo and in vitro and that of picosecond time-resolved chlorophyll fluorescence (quencher formation). Two long-lived fluorescence quenching processes during photodamage were observed and were formed at different speeds. The slow-developing quenching process exhibited a time course similar to that of the accumulation of photodamaged PSII, while the fast-developing process took place faster than the light-induced PSII damage. We attribute the slow process to the accumulation of photodamaged PSII and the fast process to an independent quenching mechanism that precedes PSII photodamage and that alleviates the inactivation of the PSII reaction centre.


2006 ◽  
Vol 401 (1) ◽  
pp. 333-339 ◽  
Author(s):  
Mark L. Bannister ◽  
Tomoyo Hamada ◽  
Takashi Murayama ◽  
Peta J. Harvey ◽  
Marco G. Casarotto ◽  
...  

To explain the mechanism of pathogenesis of channel disorder in MH (malignant hyperthermia), we have proposed a model in which tight interactions between the N-terminal and central domains of RyR1 (ryanodine receptor 1) stabilize the closed state of the channel, but mutation in these domains weakens the interdomain interaction and destabilizes the channel. DP4 (domain peptide 4), a peptide corresponding to residues Leu2442–Pro2477 of the central domain, also weakens the domain interaction and produces MH-like channel destabilization, whereas an MH mutation (R2458C) in DP4 abolishes these effects. Thus DP4 and its mutants serve as excellent tools for structure–function studies. Other MH mutations have been reported in the literature involving three other amino acid residues in the DP4 region (Arg2452, Ile2453 and Arg2454). In the present paper we investigated the activity of several mutants of DP4 at these three residues. The ability to activate ryanodine binding or to effect Ca2+ release was severely diminished for each of the MH mutants. Other substitutions were less effective. Structural studies, using NMR analysis, revealed that the peptide has two α-helical regions. It is apparent that the MH mutations are clustered at the C-terminal end of the first helix. The data in the present paper indicates that mutation of residues in this region disrupts the interdomain interactions that stabilize the closed state of the channel.


Reproduction ◽  
2003 ◽  
pp. 807-816 ◽  
Author(s):  
C Boiti ◽  
G Guelfi ◽  
D Zampini ◽  
G Brecchia ◽  
A Gobbetti ◽  
...  

Total activity of nitric oxide synthase (NOS) and the gene expression of both endothelial NOS (eNOS) and inducible NOS (iNOS) isoforms in corpora lutea of pseudopregnant rabbits were examined during prostaglandin F(2alpha) (PGF(2alpha))-induced luteolysis. Corpora lutea were collected at 0, 6, 12, 24 and 48 h after an injection of PGF(2alpha) at day 9 of pseudopregnancy. At 12 h after PGF(2alpha) administration, luteal mRNA encoding eNOS decreased (P0.05) by 40% and remained low throughout the subsequent 36 h, whereas eNOS protein increased (P0.05) two- to threefold. By contrast, expression of mRNA encoding iNOS was poor and remained fairly constant, but transcription increased eightfold (P0.01) within 6 h after PGF(2alpha) treatment and then decreased to values similar to those of controls. Total NOS activity increased twofold (P0.01) at 6 h after treatment and remained high thereafter, whereas progesterone concentrations in explanted corpora lutea decreased (P0.01) from 302.4+/-42.3 pg x mg(-1) at day 9 to 58.6+/-8.3 at 48 h later, and peripheral plasma concentrations of progesterone declined too. Long-term administration of Nomega-nitro-L-arginine methyl ester (0.6 g l(-1) per os) from day 2 of pseudopregnancy onward partially blocked the luteolytic action of PGF(2alpha) administered at day 9 of pseudopregnancy. In nitric oxide (NO)-deficient rabbits, progesterone concentrations remained higher (P0.01) than in controls at 24-48 h after PGF(2alpha) administration (4.5 to 3.2 ng x ml(-1), respectively). These data are the first to characterize NOS activity. The time course of expression of eNOS and iNOS in rabbit corpora lutea during PGF(2alpha)-induced luteolysis gives additional support to a physiological role of NO in the regulation of regression of corpora lutea in rabbits.


2021 ◽  
Author(s):  
Li Zhang ◽  
Chunxian Huang ◽  
Tsz-Lun Yeung ◽  
Sammy Ferri-Borgogno ◽  
Chilam AuYeung ◽  
...  

Abstract Background Uterine serous cancer (USC) is the most common non-endometrioid subtype of uterine cancer, and is also the most aggressive. Most patients will die of progressively chemotherapy-resistant disease, and the development of new therapies that can target USC remains a major unmet clinical need. This study sought to determine the molecular mechanism by which a novel unfavorable prognostic biomarker RYR1 identified in advanced USC confers their malignant phenotypes, and demonstrated the efficacy of targeting RYR1 by repositioned FDA-approved compounds in USC treatment. Methods TCGA USC dataset was analyzed to identify top genes that are associated with patient survival and can be targeted by FDA-approved compounds. The top gene RYR1 was selected and the functional role of RYR1 in USC progression was determined by silencing and over-expressing RYR1 in USC cells in vitro and in vivo. The molecular mechanism and signaling networks associated with the functional role of RYR1 in USC progression were determined by reverse phase protein arrays (RPPA), Western blot, and transcriptomic profiling analyses. The efficacy of the repositioned compound dantrolene on USC progression was determined using both in vitro and in vivo models. Results High expression level of ryanodine receptor 1 (RYR1) in the tumors is associated with shortened overall survival. Inhibition of RYR1 suppressed proliferation, migration and enhanced apoptosis through the Ca2+-dependent AKT/CREB/PGC-1α and AKT/HK1/2 signaling pathways, which modulate mitochondrial bioenergetics properties, including oxidative phosphorylation, ATP production, mitochondrial membrane potential, ROS production and TCA metabolites, and glycolytic activities in USC cells. Repositioned compound dantrolene suppressed USC progression in both in vitro and mouse models. Conclusions These findings provide insight into the mechanism by which RYR1 modulates the malignant phenotypes of USC and could aid in the development of dantrolene as a repurposed therapeutic agent for the treatment of USC to improve patient survival.


1999 ◽  
Vol 277 (4) ◽  
pp. C739-C745 ◽  
Author(s):  
Bagnólia A. Silva ◽  
Viviane L. A. Nouailhetas ◽  
Jeannine Aboulafia

Desensitization of ANG II tonic contractile response of the guinea pig ileum is related to membrane repolarization determined by Ca2+-activated K+(maxi-K+) channel opening. ANG II-stimulated depolarized myocytes presented sustained activation of maxi-K+ channels, characterized by reduction from 415 to 12 ms of the closed time constant. ANG II desensitization was prevented by 100 nM iberiotoxin, being reversible within 30 min. Depolarization by KCl, higher than 4 mM, impaired desensitization, suggesting that the membrane potential must attain a threshold to counteract the repolarization induced by maxi-K+ channel opening. Once this value is attained, there is no time dependency because the desensitization process was shut off by addition of KCl along the time course of the tonic response. In contrast, the sustained ACh tonic component was not altered by these maneuvers. We conclude that desensitization of the ANG II tonic component is foremost due to the opening of maxi-K+ channels, leading to membrane repolarization, thus closing the voltage-dependent Ca2+ channels responsible for the Ca2+ influx that sustains the tonic component in this muscle.


1984 ◽  
Vol 221 (1225) ◽  
pp. 395-409 ◽  

Anion-selective channels, with very large single unit conductances, are present in the cell membrane of rat cultured Schwann cells measured with the patch-clamp technique. In inside-out membrane patches, channels with a conductance of about 450 pS (in symmetrical 150 mM NaCl) were observed. These channels did not become active until several minutes after the cytoplasmic surface had been exposed to the bathing medium, suggesting that these channels may normally be kept in an inactive state by some as yet unknown internal factor. The channel opened over a relatively small potential range ( — 10 mV to + 20 mV) and closed rapidly at more positive and more negative potentials with voltage-dependent kinetics. Although the channels showed a slight permeability towards small cations the major permeability was to anions. The order of permeability was: I > Br > Cl > methyl SO 4 > SO 4 > acetate = isethionate. Aspartate and glutamate were not detectably permeant. The physiological role of these channels remains unknown.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1737
Author(s):  
Joyce T. Varughese ◽  
Susan K. Buchanan ◽  
Ashley S. Pitt

The voltage-dependent anion channel (VDAC) is a β-barrel membrane protein located in the outer mitochondrial membrane (OMM). VDAC has two conductance states: an open anion selective state, and a closed and slightly cation-selective state. VDAC conductance states play major roles in regulating permeability of ATP/ADP, regulation of calcium homeostasis, calcium flux within ER-mitochondria contact sites, and apoptotic signaling events. Three reported structures of VDAC provide information on the VDAC open state via X-ray crystallography and nuclear magnetic resonance (NMR). Together, these structures provide insight on how VDAC aids metabolite transport. The interaction partners of VDAC, together with the permeability of the pore, affect the molecular pathology of diseases including Parkinson’s disease (PD), Friedreich’s ataxia (FA), lupus, and cancer. To fully address the molecular role of VDAC in disease pathology, major questions must be answered on the structural conformers of VDAC. For example, further information is needed on the structure of the closed state, how binding partners or membrane potential could lead to the open/closed states, the function and mobility of the N-terminal α-helical domain of VDAC, and the physiological role of VDAC oligomers. This review covers our current understanding of the various states of VDAC, VDAC interaction partners, and the roles they play in mitochondrial regulation pertaining to human diseases.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Anouar Hafiane ◽  
John K Bielicki ◽  
Jan O Johansson ◽  
Jacques Genest

Microparticles (MPS) are lipoprotein-sized structures created by the ABCA1 transporter. Their biological roles in health and in disease remain unknown. Here, we study MPS released from baby hamster kidney (BHK) cells stably expressing ABCA1 and human THP-1 cells also expressing ABCA1. Media cell culture was first collected from BHK-ABCA1 expressing cells after (45min, 2, 4, 8, and 24h) incubation. After centrifugation (4000xg for 15min and 10000xg for 30min) to remove cell debris, the supernatant was passed through a 10kDa cutoff filter and subsequently subjected to analytical FPLC. FPLC analysis shows creation of a single peak in the presence of ABCA1 but not in mock-transfected BHK cells. In a time-course study, the estimated hydrodynamic diameter remained stable (≥20nm). After 8h incubation of BHK cell with apoA-I or an apo-E mimetic peptide, CS-6253 (1μM), ABCA1 mediated formation of MPS of similar size with a significant increase in 3[H]-FC content than those generated by ABCA1 alone, (373±23 % cpm, P<0.05) and (277±60 % cpm, P<0.05) respectively. This was associated with highly lipidated nHDL-CS-6253 compararely to nHDL-apoA-I (4535±72 % cpm, P<0.001 versus 1059±14 % cpm) respectively. This data suggests that MPS formations are an integral component of cellular cholesterol efflux. Also, MPS do not contain CS-6253 when ABCA1 cells were incubated with the peptide as confirmed by western blotting similar to MPS generated from ABCA1 cells generated by apoA-I incubation. Cholesterol is effluxed more to nHDL-CS-6253 (14±7.68, % cpm, P<0.01 than to MPS 1±0.10, % cpm, 24h; P<0.01) similar to apoA-I. Depletion of membrane cholesterol by methyl-β-cyclodextrin treatment impaired HDL genesis and decrease MPS release. Detection of flotellin-2 protein enriched in MPS in total cell lysate indicated that these MPS may be related to exosomes. MPS generation was also characterized in THP-1 cells for further molecular characterization. We conclude that MPS are formed by ABCA1 in diverse cell types and the cholesterol content is dependent on activation by apo A-I or mimetic peptides. The physiological role of MPS remains to be understood. These particles may be transporters of lipids and nucleic acids.


Sign in / Sign up

Export Citation Format

Share Document