scholarly journals Postulated role of interdomain interaction between regions 1 and 2 within type 1 ryanodine receptor in the pathogenesis of porcine malignant hyperthermia

2007 ◽  
Vol 402 (2) ◽  
pp. 349-357 ◽  
Author(s):  
Takashi Murayama ◽  
Toshiharu Oba ◽  
Hiroshi Hara ◽  
Kikuo Wakebe ◽  
Noriaki Ikemoto ◽  
...  

We have demonstrated recently that CICR (Ca2+-induced Ca2+ release) activity of RyR1 (ryanodine receptor 1) is held to a low level in mammalian skeletal muscle (‘suppression’ of the channel) and that this is largely caused by the interdomain interaction within RyR1 [Murayama, Oba, Kobayashi, Ikemoto and Ogawa (2005) Am. J. Physiol. Cell Physiol. 288, C1222–C1230]. To test the hypothesis that aberration of this suppression mechanism is involved in the development of channel dysfunctions in MH (malignant hyperthermia), we investigated properties of the RyR1 channels from normal and MHS (MH-susceptible) pig skeletal muscles with an Arg615→Cys mutation using [3H]ryanodine binding, single-channel recordings and SR (sarcoplasmic reticulum) Ca2+ release. The RyR1 channels from MHS muscle (RyR1MHS) showed enhanced CICR activity compared with those from the normal muscle (RyR1N), although there was little or no difference in the sensitivity to several ligands tested (Ca2+, Mg2+ and adenine nucleotide), nor in the FKBP12 (FK506-binding protein 12) regulation. DP4, a domain peptide matching the Leu2442–Pro2477 region of RyR1 which was reported to activate the Ca2+ channel by weakening the interdomain interaction, activated the RyR1N channel in a concentration-dependent manner, and the highest activity of the affected channel reached a level comparable with that of the RyR1MHS channel with no added peptide. The addition of DP4 to the RyR1MHS channel produced virtually no further effect on the channel activity. These results suggest that stimulation of the RyR1MHS channel caused by affected inter-domain interaction between regions 1 and 2 is an underlying mechanism for dysfunction of Ca2+ homoeostasis seen in the MH phenotype.

1995 ◽  
Vol 308 (1) ◽  
pp. 119-125 ◽  
Author(s):  
M Hohenegger ◽  
A Herrmann-Frank ◽  
M Richter ◽  
F Lehmann-Horn

We have tested the periodate-oxidized ATP analogue 2′,3′-dialdehyde adenosine triphosphate (oATP) as a ligand for the skeletal muscle ryanodine receptor/Ca(2+)-release channel. Ca2+ efflux from passively loaded heavy sarcoplasmic reticulum vesicles of skeletal muscle is biphasic. oATP stimulates the initial phase of Ca2+ release in a concentration-dependent manner (EC50 160 microM), and the efflux proceeds with a half-time in the range 100-200 ms. This oATP-modulated initial rapid Ca2+ release was specifically inhibited by millimolar concentrations of Mg2+ and micromolar concentrations of Ruthenium Red, indicating that the effect of oATP was mediated via the ryanodine receptor. The purified Ca(2+)-release channel was incorporated into planar lipid bilayers, and single-channel recordings were carried out to verify a direct interaction of oATP with the ryanodine receptor. Addition of oATP to the cytoplasmic side activated the channel with an EC50 of 76 microM, which is roughly 30-fold higher than the apparent affinity of ATP. The oATP-induced increase in the open probability of the ryanodine receptor displays a steep concentration-response curve with a Hill coefficient of approximately 2, which suggests a co-operativity of the ATP binding sites in the tetrameric protein. oATP binds to the ryanodine receptor in a quasi-irreversible manner via Schiff base formation between the aldehyde groups of oATP and amino groups in the nucleotide binding pocket. This allows for the covalent specific incorporation of [alpha-32P]oATP by borhydride reduction. A typical adenine nucleotide binding site cannot be identified in the primary sequence of the ryanodine receptor. Our results demonstrate that oATP can be used to probe the structure and function of the nucleotide binding pocket of the ryanodine receptor and presumably of other ATP-regulated ion channels.


2005 ◽  
Vol 288 (6) ◽  
pp. C1222-C1230 ◽  
Author(s):  
Takashi Murayama ◽  
Toshiharu Oba ◽  
Shigeki Kobayashi ◽  
Noriaki Ikemoto ◽  
Yasuo Ogawa

Ryanodine receptor (RyR) type 1 (RyR1) exhibits a markedly lower gain of Ca2+-induced Ca2+ release (CICR) activity than RyR type 3 (RyR3) in the sarcoplasmic reticulum (SR) of mammalian skeletal muscle (selective stabilization of the RyR1 channel), and this reduction in the gain is largely eliminated using 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). We have investigated whether the hypothesized interdomain interactions within RyR1 are involved in the selective stabilization of the channel using [3H]ryanodine binding, single-channel recordings, and Ca2+ release from the SR vesicles. Like CHAPS, domain peptide 4 (DP4, a synthetic peptide corresponding to the Leu2442-Pro2477 region of RyR1), which seems to destabilize the interdomain interactions, markedly stimulated RyR1 but not RyR3. Their activating effects were saturable and nonadditive. Dantrolene, a potent inhibitor of RyR1 used to treat malignant hyperthermia, reversed the effects of DP4 or CHAPS in an identical manner. These findings indicate that RyR1 is activated by DP4 and CHAPS through a common mechanism that is probably mediated by the interdomain interactions. DP4 greatly increased [3H]ryanodine binding to RyR1 with only minor alterations in the sensitivity to endogenous CICR modulators (Ca2+, Mg2+, and adenine nucleotide). However, DP4 sensitized RyR1 four- to six-fold to caffeine in the caffeine-induced Ca2+ release. Thus the gain of CICR activity critically determines the magnitude and threshold of Ca2+ release by drugs such as caffeine. These findings suggest that the low CICR gain of RyR1 is important in normal Ca2+ handling in skeletal muscle and that perturbation of this state may result in muscle diseases such as malignant hyperthermia.


Biomolecules ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 257 ◽  
Author(s):  
Dahae Lee ◽  
Seoung Rak Lee ◽  
Ki Sung Kang ◽  
Yuri Ko ◽  
Changhyun Pang ◽  
...  

Ovarian cancer is one of the leading causes of cancer deaths worldwide in women, and the most malignant cancer among the different gynecological cancers. In this study, we explored potentially anticancer compounds from Cornus walteri (Cornaceae), the MeOH extract of which has been reported to show considerable cytotoxicity against several cancer cell lines. Phytochemical investigations of the MeOH extract of the stem and stem bark of C. walteri by extensive application of chromatographic techniques resulted in the isolation of 14 compounds (1–14). The isolated compounds were evaluated for inhibitory effects on the viability of A2780 human ovarian carcinoma cells and the underlying molecular mechanisms were investigated. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was employed to assess the anticancer effects of compounds 1–14 on A2780 cells, which showed that compound 11 (betulinic acid) reduced the viability of these cells in a concentration-dependent manner and had an half maximal (50%) inhibitory concentration (IC50) of 44.47 μM at 24 h. Nuclear staining and image-based cytometric assay were carried out to detect the induction of apoptosis by betulinic acid. Betulinic acid significantly increased the condensation of nuclei and the percentage of apoptotic cells in a concentration-dependent manner in A2780 cells. Western blot analysis was performed to investigate the underlying mechanism of apoptosis. The results indicated that the expression levels of cleaved caspase-8, -3, -9, and Bax were increased in A2780 cells treated with betulinic acid, whereas those of Bcl-2 were decreased. Thus, we provide the experimental evidence that betulinic acid can induce apoptosis in A2780 cells through both mitochondria-dependent and -independent pathways and suggest the potential use of betulinic acid in the development of novel chemotherapeutics for ovarian cancer therapy.


2019 ◽  
Vol 170 (2) ◽  
pp. 509-524
Author(s):  
Kim M Truong ◽  
Gennady Cherednichenko ◽  
Isaac N Pessah

Abstract Dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE) are ubiquitous in the environment and detected in tissues of living organisms. Although DDT owes its insecticidal activity to impeding closure of voltage-gated sodium channels, it mediates toxicity in mammals by acting as an endocrine disruptor (ED). Numerous studies demonstrate DDT/DDE to be EDs, but studies examining muscle-specific effects mediated by nonhormonal receptors in mammals are lacking. Therefore, we investigated whether o,p′-DDT, p,p′-DDT, o,p′-DDE, and p,p′-DDE (DDx, collectively) alter the function of ryanodine receptor type 1 (RyR1), a protein critical for skeletal muscle excitation-contraction coupling and muscle health. DDx (0.01–10 µM) elicited concentration-dependent increases in [3H]ryanodine ([3H]Ry) binding to RyR1 with o,p′-DDE showing highest potency and efficacy. DDx also showed sex differences in [3H]Ry-binding efficacy toward RyR1, where [3H]Ry-binding in female muscle preparations was greater than male counterparts. Measurements of Ca2+ transport across sarcoplasmic reticulum (SR) membrane vesicles further confirmed DDx can selectively engage with RyR1 to cause Ca2+ efflux from SR stores. DDx also disrupts RyR1-signaling in HEK293T cells stably expressing RyR1 (HEK-RyR1). Pretreatment with DDx (0.1–10 µM) for 100 s, 12 h, or 24 h significantly sensitized Ca2+-efflux triggered by RyR agonist caffeine in a concentration-dependent manner. o,p′-DDE (24 h; 1 µM) significantly increased Ca2+-transient amplitude from electrically stimulated mouse myotubes compared with control and displayed abnormal fatigability. In conclusion, our study demonstrates DDx can directly interact and modulate RyR1 conformation, thereby altering SR Ca2+-dynamics and sensitize RyR1-expressing cells to RyR1 activators, which may ultimately contribute to long-term impairments in muscle health.


1997 ◽  
Vol 273 (3) ◽  
pp. H1082-H1089 ◽  
Author(s):  
P. Lahouratate ◽  
J. Guibert ◽  
J. F. Faivre

Cyclic ADP-ribose (cADPR), an endogenous metabolite of beta-NAD+, activates Ca2+ release from endoplasmic reticulum in sea urchin eggs via the ryanodine receptor (RyR) pathway. A similar role has been proposed in cardiac sarcoplasmic reticulum (SR), although this remains controversial. We therefore investigated the ability of cADPR to induce Ca2+ release from canine cardiac SR microsomes using fluo 3 to monitor extravesicular Ca2+ concentration. We found that cADPR induced Ca2+ release in a concentration-dependent manner, whereas neither its precursor, NAD+, nor its metabolite, ADP-ribose, elicited a consistent effect. In addition, an additive effect on calcium release between cADPR and 9-Me-7-Br-eudistomin-D (MBED), an activator of RyR, was found as well as no cross-desensitization between cADPR and MBED. Specific blockers of the RyR did not abolish the cADPR-induced Ca2+ release. These results provide evidence for cADPR-induced Ca2+ release from dog cardiac SR via a novel mechanism which is independent of RyR activation.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1087 ◽  
Author(s):  
Jian Yang ◽  
Bin Wang ◽  
Chao-feng Zhang ◽  
Xiang-hong Xu ◽  
Mian Zhang

Cynatratoside A (CyA) is a C21 Steroidal glycoside with pregnane skeleton isolated from the root of Cynanchum atratum Bunge (Asclepiadaceae). This study aimed to investigate the effects of CyA on concanavalin A (Con A)-induced autoimmune hepatitis (AIH) and the underlying mechanism. CyA was orally administered to mice at 10 and 40 mg/kg 8 h before and 1 h after Con A treatment. The effects of CyA on Con A-induced spleen and liver in mice were assessed via histopathological changes, T lymphocyte amounts and the expressions of IL-1β and ICAM-1. Con A-induced L-02 hepatocytes were used to evaluate whether CyA (0.1–10 μM) can directly protect hepatocytes from cytotoxicity and the possible mechanism. The results revealed that CyA treatment could significantly improve the histopathological changes of spleen and liver, reduce the proliferation of splenic T lymphocytes, and decrease the expressions of IL-1β and ICAM-1 in liver. The experiment in vitro showed that CyA inhibited Con A-induced hepatotoxicity in a concentration-dependent manner. CyA (10 μM) significantly increased/decreased the expression of Bcl-2/Bax and reduced the levels of cleaved caspases-9 and -3. Our study demonstrated for the first time that CyA has a significant protective effect on Con A-induced AIH by inhibiting the activation and adhesion of T lymphocytes and blocking hepatocyte apoptosis.


2006 ◽  
Vol 401 (1) ◽  
pp. 333-339 ◽  
Author(s):  
Mark L. Bannister ◽  
Tomoyo Hamada ◽  
Takashi Murayama ◽  
Peta J. Harvey ◽  
Marco G. Casarotto ◽  
...  

To explain the mechanism of pathogenesis of channel disorder in MH (malignant hyperthermia), we have proposed a model in which tight interactions between the N-terminal and central domains of RyR1 (ryanodine receptor 1) stabilize the closed state of the channel, but mutation in these domains weakens the interdomain interaction and destabilizes the channel. DP4 (domain peptide 4), a peptide corresponding to residues Leu2442–Pro2477 of the central domain, also weakens the domain interaction and produces MH-like channel destabilization, whereas an MH mutation (R2458C) in DP4 abolishes these effects. Thus DP4 and its mutants serve as excellent tools for structure–function studies. Other MH mutations have been reported in the literature involving three other amino acid residues in the DP4 region (Arg2452, Ile2453 and Arg2454). In the present paper we investigated the activity of several mutants of DP4 at these three residues. The ability to activate ryanodine binding or to effect Ca2+ release was severely diminished for each of the MH mutants. Other substitutions were less effective. Structural studies, using NMR analysis, revealed that the peptide has two α-helical regions. It is apparent that the MH mutations are clustered at the C-terminal end of the first helix. The data in the present paper indicates that mutation of residues in this region disrupts the interdomain interactions that stabilize the closed state of the channel.


2016 ◽  
Vol 310 (11) ◽  
pp. C894-C902 ◽  
Author(s):  
Amira Moustafa ◽  
Yoshiaki Habara

The aim of this study was to define the effects of polysulfide on intracellular Ca2+ concentration ([Ca2+]i) and the underlying machinery, especially from the hydrogen sulfide (H2S) and nitric oxide (NO) perspectives, in rat peritoneal mast cells. We found that a polysulfide donor, Na2S4, increased [Ca2+]i, which is both extracellular and intracellular Ca2+ dependent. Intracellular Ca2+ release induced by Na2S4 was attenuated by the addition of a ryanodine receptor blocker. A slow-releasing H2S donor, GYY4137, dose dependently increased [Ca2+]i that was independent from extracellular Ca2+ influx. The GYY4137-induced [Ca2+]i release was partially attenuated in the presence of the ryanodine receptor blocker. Both polysulfide and H2S donors increased the intracellular NO levels in DAF-2-loaded mast cells, which were abolished by an NO scavenger, cPTIO. Inhibition of NO synthase (NOS) significantly abolished the polysulfide- or H2S-donor-induced [Ca2+]i elevation in the absence of extracellular Ca2+. An NO donor, diethylamine (DEA) NONOate, increased [Ca2+]i in a concentration-dependent manner, in which both extracellular and intracellular Ca2+ are associated. At higher concentrations, the DEA NONOate-induced [Ca2+]i increases were attenuated in the absence of extracellular Ca2+ and by the addition of the ryanodine receptor blocker. H2S and NO dose dependently induced polysulfide production. Curiously, polysulfide, H2S, and NO donors had no effect on mast cell degranulation. Among synthases, cystathionine-γ-lyase, and neuronal NOS seemed to be the major H2S- and NO-producing synthases, respectively. These results indicate that polysulfide acts as a potential signaling molecule that regulates [Ca2+]i homeostasis in rat peritoneal mast cells via a cross talk with NO and H2S.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Ya-Ni Wang ◽  
Ling-Ling Zhang ◽  
Xiao-Yun Fan ◽  
Sha-Sha Wu ◽  
Sheng-Quan Zhang

Cationic protein is a cytotoxic protein secreted by eosinophils and takes part in the damage of airway epithelium in asthma. Poly-L-arginine (PLA), a synthetic cationic protein, is widely used to mimic the biological function of the natural cationic protein in vitro. Previous studies demonstrated the damage of the airway epithelial cells by cationic protein, but the molecular mechanism is unclear. The purpose of this study aimed at exploring whether PLA could induce apoptosis of human airway epithelial cells (NCI-H292) and the underlying mechanism. Methods. The morphology of apoptotic cells was observed by transmission electron microscopy. The rate of apoptosis was analyzed by flow cytometry (FCM). The expressions of the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Bcl-2/Bax, and cleaved caspase-3 were assessed by western blot. Results. PLA can induce apoptosis in NCI-H292 cells in a concentration-dependent manner. Moreover, the phosphorylation of the ERK1/2 and the unbalance of Bcl2/Bax, as well as the activation of caspase-3, were involved in the PLA-induced apoptosis. Conclusions. PLA can induce the apoptosis in NCI-H292 cells, and this process at least involved the ERK1/2 and mitochondrial pathway. The results could have some indications in revealing the apoptotic damage of the airway epithelial cells. Besides, inhibition of cationic protein-induced apoptotic death in airway epithelial cells could be considered as a potential target of anti-injury or antiremodeling in asthmatics.


2009 ◽  
Vol 297 (4) ◽  
pp. E949-E955 ◽  
Author(s):  
Geneviève Escher ◽  
Isabelle Vögeli ◽  
Robert Escher ◽  
Robert C. Tuckey ◽  
Sandra Erickson ◽  
...  

In the kidney, progesterone is inactivated to 20α-dihydro-progesterone (20α-DH-progesterone) to protect the mineralocorticoid receptor from progesterone excess. In an attempt to clone the enzyme with 20α-hydroxysteroid activity using expression cloning in CHOP cells and a human kidney expression library, serendipitously cDNA encoding CYP27A1 was isolated. Overexpression of CYP27A1 in CHOP cells decreased progesterone conversion to 20α-DH-progesterone in a dose-dependent manner, an effect enhanced by cotransfection with adrenodoxin and adrenodoxin reductase. Incubation of CHOP cells with 27-hydroxycholesterol, a product of CYP27A1, increased the ratio of progesterone to 20α-DH-progesterone in a concentration-dependent manner, indicating that the effect of CYP27A1 overexpression was mediated by 27-hydroxycholesterol. To analyze whether these observations are relevant in vivo, progesterone and 20α-DH-progesterone were measured by gas chromatography-mass spectometry in 24-h urine of CYP27A1 gene knockout (ko) mice and their control wild-type and heterozygote littermates. In CYP27A1 ko mice, urinary progesterone concentrations were decreased, 20α-DH-progesterone increased, and the progesterone-to-20α-DH-progesterone ratio decreased threefold ( P < 0.001). Thus CYP27A1 modulates progesterone concentrations. The underlying mechanism is inhibition of 20α-hydroxysteroid dehydrogenase by 27-hydroxycholesterol.


Sign in / Sign up

Export Citation Format

Share Document