scholarly journals The case for regulating indispensable amino acid metabolism: the branched-chain α-keto acid dehydrogenase kinase-knockout mouse

2006 ◽  
Vol 400 (1) ◽  
Author(s):  
Susan M. Hutson

BCAAs (branched-chain amino acids) are indispensable (essential) amino acids that are required for body protein synthesis. Indispensable amino acids cannot be synthesized by the body and must be acquired from the diet. The BCAA leucine provides hormone-like signals to tissues such as skeletal muscle, indicating overall nutrient sufficiency. BCAA metabolism provides an important transport system to move nitrogen throughout the body for the synthesis of dispensable (non-essential) amino acids, including the neurotransmitter glutamate in the central nervous system. BCAA metabolism is tightly regulated to maintain levels high enough to support these important functions, but at the same time excesses are prevented via stimulation of irreversible disposal pathways. It is well known from inborn errors of BCAA metabolism that dysregulation of the BCAA catabolic pathways that leads to excess BCAAs and their α-keto acid metabolites results in neural dysfunction. In this issue of Biochemical Journal, Joshi and colleagues have disrupted the murine BDK (branched-chain α-keto acid dehydrogenase kinase) gene. This enzyme serves as the brake on BCAA catabolism. The impaired growth and neurological abnormalities observed in this animal show conclusively the importance of tight regulation of indispensable amino acid metabolism.

2020 ◽  
Author(s):  
Youxiu Zhu ◽  
Hanyuan Zhang ◽  
Peng Xu ◽  
Zixia Zhao ◽  
Jianxin Feng ◽  
...  

Abstract Background Fish muscular amino acids are a series of essential nutrients that embrace essential amino acids, branched-chain amino acids and flavorous amino acids. Previous studies have found that amino acids have important physiological effects on fish growth and development, as they are involved in maintaining nitrogen balance and in the formation of enzymes and hormones. Amino acids, such as aspartic acid, glutamic acid, glycine and alanine, that can have a significant effect on fish umami taste are called flavorous amino acids. Nevertheless, the studies on the genetic mechanisms of amino acid metabolism in the common carp (Cyprinus carpio) are still limited. Results The purpose of this study was to examine the divergent patterns at the genomic, transcriptomic and epigenomic levels in fish with different amino acid contents. Genome-wide association analysis using 195 individuals of common carp was conducted, and 62 genes were identified to be associated with glycine, proline, and tyrosine content. RNA-Seq of samples with extreme contents of essential amino acids, branched-chain amino acids and flavorous amino acids was applied using brain, liver and muscle tissues, resulting in 1,643 differentially expressed genes. Whole-genome bisulfite sequencing identified 3,108 genes with differentially methylated promoters. Through the enrichment analysis of transcriptome and DNA methylation results, we screened out a series of enriched pathways associated with amino acid metabolism, including various categories of pathways spanning growth regulation, lipid metabolism, the citrate cycle and other signaling pathways. Integrated studies demonstrated prominent correlations between DGE and DMP for amino acid contents trait in brain and muscle tissues. Conclusion In summary, the multi-omics data revealed candidate genes and pathways correlated with amino acid metabolism. These results will promote the process of the genomic selection and breeding strategy in muscular amino acid contents of fish.


2021 ◽  
Author(s):  
Youxiu Zhu ◽  
Hanyuan Zhang ◽  
Peng Xu ◽  
Zixia Zhao ◽  
Jianxin Feng ◽  
...  

Abstract Background: Fish muscular amino acids are a series of essential nutrients that embrace essential amino acids, branched-chain amino acids and flavorous amino acids. Previous studies have found that amino acids have important physiological effects on fish growth and development, as they are involved in maintaining nitrogen balance and in the formation of enzymes and hormones. Amino acids, such as aspartic acid, glutamic acid, glycine and alanine, that can have a significant effect on fish umami taste are called flavorous amino acids. Nevertheless, the studies on the genetic mechanisms of amino acid metabolism in the common carp (Cyprinus carpio) are still limited.Results: The purpose of this study was to examine the divergent patterns at the genomic, transcriptomic and epigenomic levels in fish with different amino acid contents. Genome-wide association analysis using 195 individuals of common carp was conducted, and 62 genes were identified to be associated with glycine, proline, and tyrosine content. RNA-Seq of samples with extreme contents of essential amino acids, branched-chain amino acids and flavorous amino acids was applied using brain, liver and muscle tissues, resulting in 1,643 differentially expressed genes. Whole-genome bisulfite sequencing identified 3,108 genes with differentially methylated promoters. Through the enrichment analysis of transcriptome and DNA methylation results, we screened out a series of enriched pathways associated with amino acid metabolism, including various categories of pathways spanning growth regulation, lipid metabolism, the citrate cycle and other signaling pathways. Integrated studies demonstrated prominent correlations between DGE and DMP for amino acid contents trait in brain and muscle tissues.Conclusions: In summary, the multi-omics data revealed candidate genes and pathways correlated with amino acid metabolism. These results will promote the process of the genomic selection and breeding strategy in muscular amino acid contents of fish.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 675 ◽  
Author(s):  
Bo-Hyun Choi ◽  
Jonathan L. Coloff

Far beyond simply being 11 of the 20 amino acids needed for protein synthesis, non-essential amino acids play numerous important roles in tumor metabolism. These diverse functions include providing precursors for the biosynthesis of macromolecules, controlling redox status and antioxidant systems, and serving as substrates for post-translational and epigenetic modifications. This functional diversity has sparked great interest in targeting non-essential amino acid metabolism for cancer therapy and has motivated the development of several therapies that are either already used in the clinic or are currently in clinical trials. In this review, we will discuss the important roles that each of the 11 non-essential amino acids play in cancer, how their metabolic pathways are linked, and how researchers are working to overcome the unique challenges of targeting non-essential amino acid metabolism for cancer therapy.


1998 ◽  
Vol 10 (3) ◽  
pp. 279 ◽  
Author(s):  
Y. G. Jung ◽  
T. Sakata ◽  
E. S. Lee ◽  
Y. Fukui

The uptake and synthesis of 19 amino acids by fresh or frozen–thawed bovine blastocysts produced by parthenogenesis (PT) or in vitro fertilization (IVF) were compared in the present study. Fresh blastocysts, 180 h after IVF or PT activation, and frozen–thawed blastocysts, 168 h old and cultured for 12 h post-thawing, were cultured in synthetic oviduct fluid medium (SOFM) containing polyvinyl alcohol (PVA) with both essential and non-essential amino acids (EAA and NEAA, respectively) (Medium 1: M1) or SOFM containing PVA with only EAA (Medium 2: M2). In Experiment 1, when fresh or frozen–thawed PT blastocysts were cultured in M1, the uptake of glutamate (in fresh only), aspartate and arginine, and the synthesis of glutamine and alanine were significantly enhanced. In the culture with M2, serine, asparagine, glutamate, glutamine, glycine, arginine and alanine were significantly taken up. It was found that the glutamine concentrations was significantly higher (P < 0.001) in the culture medium drops containing embryos than in the drops without embryos. In Experiment 2, when PT blastocysts were cultured in M1, the uptake of aspartate and synthesis of alanine were greater (P < 0.01) than those by IVF blastocysts. When M2 was used, a significant (P < 0.01) production of serine, asparagine, glutamate, glutamine and alanine, and the uptake of arginine by PT blastocysts were observed. In Experiment 3, when IVF blastocysts were cultured in M1, fresh blastocysts depleted more aspartate and glutamate, and produced more glutamine and alanine than frozen–thawed blastocysts. When cultured in M2, frozen–thawed blastocysts depleted more threonine (P < 0.01) than fresh blastocysts. These results indicate that the uptake and synthesis of amino acids were different in fresh or frozen–thawed bovine blastocysts derived from PT or IVF. These differences in amino acid metabolism may be related to the viability of the blastocysts.


2004 ◽  
Vol 82 (7) ◽  
pp. 506-514 ◽  
Author(s):  
Enoka P Wijekoon ◽  
Craig Skinner ◽  
Margaret E Brosnan ◽  
John T Brosnan

We investigated amino acid metabolism in the Zucker diabetic fatty (ZDF Gmi fa/fa) rat during the prediabetic insulin-resistant stage and the frank type 2 diabetic stage. Amino acids were measured in plasma, liver, and skeletal muscle, and the ratios of plasma/liver and plasma/skeletal muscle were calculated. At the insulin-resistant stage, the plasma concentrations of the gluconeogenic amino acids aspartate, serine, glutamine, glycine, and histidine were decreased in the ZDF Gmi fa/fa rats, whereas taurine, α-aminoadipic acid, methionine, phenylalanine, tryptophan, and the 3 branched-chain amino acids were significantly increased. At the diabetic stage, a larger number of gluconeogenic amino acids had decreased plasma concentrations. The 3 branched-chain amino acids had elevated plasma concentrations. In the liver and the skeletal muscles, concentrations of many of the gluconeogenic amino acids were lower at both stages, whereas the levels of 1 or all of the branched-chain amino acids were elevated. These changes in amino acid concentrations are similar to changes seen in type 1 diabetes. It is evident that insulin resistance alone is capable of bringing about many of the changes in amino acid metabolism observed in type 2 diabetes.Key words: plasma amino acids, liver amino acids, muscle amino acids, gluconeogenesis.


2002 ◽  
Vol 27 (6) ◽  
pp. 646-662 ◽  
Author(s):  
Donald K. Layman

Exercise produces changes in protein and amino acid metabolism. These changes include degradation of the branched-chain amino acids, production of alanine and glutamine, and changes in protein turnover. One of the amino acid most affected by exercise is the branched-chain amino acid leucine. Recently, there has been an increased understanding of the role of leucine in metabolic regulations and remarkable new findings about the role of leucine in intracellular signaling. Leucine appears to exert a synergistic role with insulin as a regulatory factor in the insulin/phosphatidylinositol-3 kinase (PI3-K) signal cascade. Insulin serves to activate the signal pathway, while leucine is essential to enhance or amplify the signal for protein synthesis at the level of peptide initiation. Studies feeding amino acids or leucine soon after exercise suggest that post-exercise consumption of amino acids stimulates recovery of muscle protein synthesis via translation regulations. This review focuses on the unique roles of leucine in amino acid metabolism in skeletal muscle during and after exercise. Key words: branched-chain amino acids, insulin, protein synthesis, skeletal muscle


Sign in / Sign up

Export Citation Format

Share Document