Glutamine-181 is crucial in the enzymatic activity and substrate specificity of human endoplasmic-reticulum aminopeptidase-1

2008 ◽  
Vol 416 (1) ◽  
pp. 109-116 ◽  
Author(s):  
Yoshikuni Goto ◽  
Hiroe Tanji ◽  
Akira Hattori ◽  
Masafumi Tsujimoto

ERAP-1 (endoplasmic-reticulum aminopeptidase-1) is a multifunctional enzyme with roles in the regulation of blood pressure, angiogenesis and the presentation of antigens to MHC class I molecules. Whereas the enzyme shows restricted specificity toward synthetic substrates, its substrate specificity toward natural peptides is rather broad. Because of the pathophysiological significance of ERAP-1, it is important to elucidate the molecular basis of its enzymatic action. In the present study we used site-directed mutagenesis to identify residues affecting the substrate specificity of human ERAP-1 and identified Gln181 as important for enzymatic activity and substrate specificity. Replacement of Gln181 by aspartic acid resulted in a significant change in substrate specificity, with Q181D ERAP-1 showing a preference for basic amino acids. In addition, Q181D ERAP-1 cleaved natural peptides possessing a basic amino acid at the N-terminal end more efficiently than did the wild-type enzyme, whereas its cleavage of peptides with a non-basic amino acid was significantly reduced. Another mutant enzyme, Q181E, also revealed some preference for peptides with a basic N-terminal amino acid, although it had little hydrolytic activity toward the synthetic peptides tested. Other mutant enzymes, including Q181N and Q181A ERAP-1s, revealed little enzymatic activity toward synthetic or peptide substrates. These results indicate that Gln181 is critical for the enzymatic activity and substrate specificity of ERAP-1.

2010 ◽  
Vol 432 (2) ◽  
pp. 387-398 ◽  
Author(s):  
Shin-ya Morita ◽  
Atsuko Takeuchi ◽  
Shuji Kitagawa

The enzyme catalysing the conversion of PE (phosphatidylethanolamine) into PC (phosphatidylcholine), PEMT (PE N-methyltransferase), exists as two isoforms, PEMT-L (longer isoform of PEMT) and PEMT-S (shorter isoform of PEMT). In the present study, to compare the functions of the two isoforms of PEMT, we established HEK (human embryonic kidney)-293 cell lines stably expressing PEMT-L and PEMT-S. Both PEMT-L and PEMT-S were localized in the ER (endoplasmic reticulum). PEMT-L, but not PEMT-S, was N-glycosylated with high-mannose oligosaccharides. The enzymatic activity of PEMT-S was much higher than that of PEMT-L. By using novel enzymatic assays for measuring PC and PE, we showed that PEMT-L and PEMT-S expression remarkably increased the cellular PC content, whereas the PE content was decreased by PEMT-S expression, but was hardly affected by PEMT-L expression. The cellular content of phosphatidylserine was also reduced by the expression of PEMT-L or PEMT-S. MS analyses demonstrated that the expression of PEMT-S led to more increases in the molecular species of PC and PC-O (ether-linked PC) with longer polyunsaturated chains than that of PEMT-L, whereas the PC-O species with shorter chains were increased more by PEMT-L expression than by PEMT-S expression, suggesting a difference in the substrate specificity of PEMT-L and PEMT-S. On the other hand, various PE and PE-O species were decreased by PEMT-S expression. In addition, PEMT-L and PEMT-S expression promoted the proliferation of HEK-293 cells. Based upon these findings, we propose a model in which the enzymatic activity and substrate specificity are regulated by the glycosylated N-terminal region of PEMT-L localized in the ER lumen.


1996 ◽  
Vol 134 (6) ◽  
pp. 1455-1467 ◽  
Author(s):  
B Nikolic ◽  
E Mac Nulty ◽  
B Mir ◽  
G Wiche

We have generated a series of plectin deletion and mutagenized cDNA constructs to dissect the functional sequences that mediate plectin's interaction with intermediate filament (IF) networks, and scored their ability to coalign or disrupt intermediate filaments when ectopically expressed in rat kangaroo PtK2 cells. We show that a stretch of approximately 50 amino acid residues within plectin's carboxy-terminal repeat 5 domain serves as a unique binding site for both vimentin and cytokeratin IF networks of PtK2 cells. Part of the IF-binding domain was found to constitute a functional nuclear localization signal (NLS) motif, as demonstrated by nuclear import of cytoplasmic proteins linked to this sequence. Site directed mutagenesis revealed a specific cluster of four basic amino acid residues (arg4277-arg4280) residing within the NLS sequence motif to be essential for IF binding. When mutant proteins corresponding to those expressed in PtK2 cells were expressed in bacteria and purified proteins subjected to a sensitive quantitative overlay binding assay using Eu3+-labeled vimentin, the relative binding capacities of mutant proteins measured were fully consistent with the mutant's phenotypes observed in living cells. Using recombinant proteins we also show by negative staining and rotary shadowing electron microscopy that in vitro assembled vimentin intermediate filaments become packed into dense aggregates upon incubation with plectin repeat 5 domain, in contrast to repeat 4 domain or a mutated repeat 5 domain.


2005 ◽  
Vol 71 (11) ◽  
pp. 7229-7235 ◽  
Author(s):  
Jiro Arima ◽  
Yoshiko Uesugi ◽  
Masaki Iwabuchi ◽  
Tadashi Hatanaka

ABSTRACT To tailor leucine aminopeptidase from Streptomyces septatus TH-2 (SSAP) to become a convenient biocatalyst, we are interested in Phe221 of SSAP, which is thought to interact with the side chain of the N-terminal residue of the substrate. By using saturation mutagenesis, the feasibility of altering the performance of SSAP was evaluated. The hydrolytic activities of 19 mutants were investigated using aminoacyl p-nitroanilide (pNA) derivatives as substrates. Replacement of Phe221 resulted in changes in the activities of all the mutants. Three of these mutants, F221G, F221A, and F221S, specifically hydrolyzed l-Phe-pNA, and F221I SSAP exhibited hydrolytic activity with l-Leu-pNA exceeding that of the wild type. Although the hydrolytic activities with peptide substrates decreased, the hydrolytic activities with amide and methyl ester substrates were proportional to the changes in the hydrolytic activities with pNA derivatives. Furthermore, based on a comparative kinetic study, the mechanism underlying the alteration in the preference of SSAP from leucine to phenylalanine is discussed.


2010 ◽  
Vol 192 (9) ◽  
pp. 2335-2345 ◽  
Author(s):  
Dylan Dodd ◽  
Shinichi Kiyonari ◽  
Roderick I. Mackie ◽  
Isaac K. O. Cann

ABSTRACT Prevotella bryantii B14 is a member of the phylum Bacteroidetes and contributes to the degradation of hemicellulose in the rumen. The genome of P. bryantii harbors four genes predicted to encode glycoside hydrolase (GH) family 3 (GH3) enzymes. To evaluate whether these genes encode enzymes with redundant biological functions, each gene was cloned and expressed in Escherichia coli. Biochemical analysis of the recombinant proteins revealed that the enzymes exhibit different substrate specificities. One gene encoded a cellodextrinase (CdxA), and three genes encoded β-xylosidase enzymes (Xyl3A, Xyl3B, and Xyl3C) with different specificities for either para-nitrophenyl (pNP)-linked substrates or substituted xylooligosaccharides. To identify the amino acid residues that contribute to catalysis and substrate specificity within this family of enzymes, the roles of conserved residues (R177, K214, H215, M251, and D286) in Xyl3B were probed by site-directed mutagenesis. Each mutation led to a severely decreased catalytic efficiency without a change in the overall structure of the mutant enzymes. Through amino acid sequence alignments, an amino acid residue (E115) that, when mutated to aspartic acid, resulted in a 14-fold decrease in the k cat/Km for pNP-β-d-xylopyranoside (pNPX) with a concurrent 1.1-fold increase in the k cat/Km for pNP-β-d-glucopyranoside (pNPG) was identified. Amino acid residue E115 may therefore contribute to the discrimination between β-xylosides and β-glucosides. Our results demonstrate that each of the four GH3 enzymes has evolved to perform a specific role in lignopolysaccharide hydrolysis and provide insight into the role of active-site residues in catalysis and substrate specificity for GH3 enzymes.


2003 ◽  
Vol 69 (8) ◽  
pp. 4830-4836 ◽  
Author(s):  
Takeharu Tsuge ◽  
Tamao Hisano ◽  
Seiichi Taguchi ◽  
Yoshiharu Doi

ABSTRACT Aeromonas caviae R-specific enoyl-coenzyme A (enoyl-CoA) hydratase (PhaJAc) is capable of providing (R)-3-hydroxyacyl-CoA with a chain length of four to six carbon atoms from the fatty acid β-oxidation pathway for polyhydroxyalkanoate (PHA) synthesis. In this study, amino acid substitutions were introduced into PhaJAc by site-directed mutagenesis to investigate the feasibility of altering the specificity for the acyl chain length of the substrate. A crystallographic structure analysis of PhaJAc revealed that Ser-62, Leu-65, and Val-130 define the width and depth of the acyl-chain-binding pocket. Accordingly, we targeted these three residues for amino acid substitution. Nine single-mutation enzymes and two double-mutation enzymes were generated, and their hydratase activities were assayed in vitro by using trans-2-octenoyl-CoA (C8) as a substrate. Three of these mutant enzymes, L65A, L65G, and V130G, exhibited significantly high activities toward octenoyl-CoA than the wild-type enzyme exhibited. PHA formation from dodecanoate (C12) was examined by using the mutated PhaJAc as a monomer supplier in recombinant Escherichia coli LS5218 harboring a PHA synthase gene from Pseudomonas sp. strain 61-3 (phaC1 Ps). When L65A, L65G, or V130G was used individually, increased molar fractions of 3-hydroxyoctanoate (C8) and 3-hydroxydecanoate (C10) units were incorporated into PHA. These results revealed that Leu-65 and Val-130 affect the acyl chain length substrate specificity. Furthermore, comparative kinetic analyses of the wild-type enzyme and the L65A and V130G mutants were performed, and the mechanisms underlying changes in substrate specificity are discussed.


2009 ◽  
Vol 54 (1) ◽  
pp. 471-476 ◽  
Author(s):  
Jose-Manuel Rodriguez-Martinez ◽  
Patrice Nordmann ◽  
Nicolas Fortineau ◽  
Laurent Poirel

ABSTRACT Two carbapenem-resistant isolates, one Escherichia coli isolate and one Klebsiella pneumoniae isolate, recovered from an Algerian patient expressed a novel VIM-type metallo-β-lactamase (MBL). The identified bla VIM-19 gene was located on a ca. 160-kb plasmid and located inside a class 1 integron in both isolates. VIM-19 differed from VIM-1 by the Asn215Lys and Ser228Arg substitutions, increasing its hydrolytic activity toward carbapenems. Site-directed mutagenesis experiments showed that both substitutions were necessary for the increased carbapenemase activity of VIM-19. This study indicates that MBLs with enhanced activity toward carbapenems may be obtained as a result of very few amino acid substitutions.


2010 ◽  
Vol 285 (33) ◽  
pp. 25708-25719 ◽  
Author(s):  
Xiaoyi Deng ◽  
Jeongmi Lee ◽  
Anthony J. Michael ◽  
Diana R. Tomchick ◽  
Elizabeth J. Goldsmith ◽  
...  

2005 ◽  
Vol 71 (10) ◽  
pp. 5823-5827 ◽  
Author(s):  
Kazutoshi Fujii ◽  
Hirotaka Minagawa ◽  
Yoshinobu Terada ◽  
Takeshi Takaha ◽  
Takashi Kuriki ◽  
...  

ABSTRACT Amylomaltase from Thermus aquaticus catalyzes intramolecular transglycosylation of α-1,4 glucans to produce cyclic α-1,4 glucans (cycloamyloses) with degrees of polymerization of 22 and higher. Although the amylomaltase mainly catalyzes the transglycosylation reaction, it also has weak hydrolytic activity, which results in a reduction in the yield of the cycloamyloses. In order to obtain amylomaltase with less hydrolytic activity, random mutagenesis was perfromed for the enzyme gene. Tyr54 (Y54) was identified as the amino acid involved in the hydrolytic activity of the enzyme. When Y54 was replaced with all other amino acids by site-directed mutagenesis, the hydrolytic activities of the mutated enzymes were drastically altered. The hydrolytic activities of the Y54G, Y54P, Y54T, and Y54W mutated enzymes were remarkably reduced compared with that of the wild-type enzyme, while those of the Y54F and Y54K mutated enzymes were similar to that of the wild-type enzyme. Introducing an amino acid replacement at Y54 also significantly affected the cyclization activity of the amylomaltase. The Y54A, Y54L, Y54R, and Y54S mutated enzymes exhibited cyclization activity that was approximately twofold higher than that of the wild-type enzyme. When the Y54G mutated enzyme was employed for cycloamylose production, the yield of cycloamyloses was more than 90%, and there was no decrease until the end of the reaction.


2018 ◽  
Author(s):  
Hongxia Wang ◽  
Chengyuan Wang ◽  
Weijuan Fan ◽  
Jun Yang ◽  
Ingo Appelhagen ◽  
...  

AbstractGlycosylation contributes to the diversity and stability of anthocyanins in plants. The process is catalyzed by various glucosyltransferases using different anthocyanidin aglycones and glycosyl donors. An anthocyanidin 3-O-glucoside-2”-O-glucosyltransferase (3GGT) from purple sweetpotato (cv. Ayamurasaki) served for the catalytic conversion of anthocyanidin 3-O-glucoside into anthocyanidin 3-O-sophoroside, which is functionally different from the 3GGT ortholog of Arabidopsis. The phylogenetic analysis indicates regioselectivity of 3GGT using UDP-xylose or UDP-glucose as the glycosyl is divergent between Convolvulaceae and Arabidopsis. Homology-based protein modeling and site-directed mutagenesis of Ib3GGT and At3GGT suggested that the Thr-138 of Ib3GGT is a key amino acid residue for UDP-glucose recognition and plays a major role in sugar donor selectivity. The wild type and ugt79b1 mutants of Arabidopsis plants overexpressing Ib3GGT produced the new component cyanidin 3-O-sophoroside. Moreover, Ib3GGT expression was associated with anthocyanin accumulation in different tissues during Ayamurasaki plant development and was regulated by the transcription factor IbMYB1. The localization assay of Ib3GGT showed that further glycosylation occurs in the cytosol and not endoplasmic reticulum. The present study revealed the function of Ib3GGT in further glycosylation of anthocyanins and its Thr-138 is the key amino acid residue for UDP-glucose recognition.


Sign in / Sign up

Export Citation Format

Share Document