scholarly journals The effects of oxygen solubility and high concentrations of salts on photosynthetic electron transport in chloroplast membranes

1984 ◽  
Vol 218 (2) ◽  
pp. 539-545 ◽  
Author(s):  
B Thomasset ◽  
J N Barbotin ◽  
D Thomas

Chloroplast membranes were isolated in different media containing Hepes [4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid] and high concentrations of sorbitol (0.33 M), potassium citrate (0.75 M) or Na2SO4 (1.0 M). Due to the complexity of the media, the oxygen solubility is strongly modified by high concentrations of salts (oxygen solubility for 0.33 M-sorbitol, 0.21 mmol/litre; for 0.75 M-potassium citrate, 0.121 mmol/litre; and for 1.0 M-Na2SO4, 0.112 mmol/litre). The knowledge of these values is necessary to interpret the rate of O2 evolution. For thylakoids isolated in ‘sorbitol buffer’ and then tested in high concentrations of potassium citrate, a slight stimulation of O2 evolution is observed (143-173 mumol of O2/h per mg of chlorophyll a) with potassium ferricyanide as electron acceptor. When we monitor the potassium ferricyanide reduction, no stimulation of electron transport is obtained even if the observed phenomenon is identical with the Photosystem-II oxygen evolution. In the same experiments no stimulation of the photophosphorylation was recorded, but when thylakoids are directly isolated in 0.75 M-potassium citrate, O2 evolution, ferricyanide reduction and photophosphorylation are inhibited by high concentrations of salts. The behaviour of thylakoids seems to be influenced by their initial treatment.

1982 ◽  
Vol 204 (3) ◽  
pp. 705-712 ◽  
Author(s):  
A C Stewart

1. Photosynthetic electron transport from water to lipophilic Photosystem II acceptors was stimulated 3-5-fold by high concentrations (greater than or equal to 1 M) of salts containing anions such as citrate, succinate and phosphate that are high in the Hofmeister series. 2. In trypsin-treated chloroplasts, K3Fe(CN)6 reduction insensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea was strongly stimulated by high concentrations of potassium citrate, but there was much less stimulation of 2,6-dichloroindophenol reduction in Tris-treated chloroplasts supplied with 1,5-diphenylcarbazide as artificial donor. The results suggest that the main site of action of citrate was the O2-evolving complex of Photosystem II. 3. Photosystem I partial reactions were also stimulated by intermediate concentrations of citrate (up to 2-fold stimulation by 0.6-0.8 M-citrate), but were inhibited at the highest concentrations. The observed stimulation may have been caused by stabilizaton of plastocyanin that was complexed with the Photosystem I reaction centre, 4. At 1 M, potassium citrate protected O2 evolution against denaturation by heat or by the chaotropic agent NaNO3. 5. It is suggested that anions high in the Hofmeister series stimulated and stabilized electron transport by enhancing water structure around the protein complexes in the thylakoid membrane.


1983 ◽  
Vol 210 (2) ◽  
pp. 583-589 ◽  
Author(s):  
A C Stewart ◽  
A W D Larkum

Thylakoid membrane preparations active in photosynthetic electron transport have been obtained from two marine red algae, Griffithsia monilis and Anotrichium tenue. High concentrations (0.5-1.0 M) of salts such as phosphate, citrate, succinate and tartrate stabilized functional binding of phycobilisomes to the membrane and also stabilized Photosystem II-catalysed electron-transport activity. High concentrations (1.0 M) of chloride and nitrate, or 30 mM-Tricine/NaOH buffer (pH 7.2) in the absence of salts, detached phycobilisomes and inhibited electron transport through Photosystem II. The O2-evolving system was identified as the electron-transport chain component that was inhibited under these conditions. Washing membranes with buffers containing 1.0-1.5 M-sorbitol and 5-50 mM concentrations of various salts removed the outer part of the phycobilisome but retained 30-70% of the allophycocyanin ‘core’ of the phycobilisome. These preparations were 30-70% active in O2 evolution compared with unwashed membranes. In the sensitivity of their O2-evolving apparatus to the composition of the medium in vitro, the red algae resembled blue-green algae and differed from other eukaryotic algae and higher plants. It is suggested that an environment of structured water may be essential for the functional integrity of Photosystem II in biliprotein-containing algae.


Weed Science ◽  
1974 ◽  
Vol 22 (5) ◽  
pp. 443-449 ◽  
Author(s):  
Arturo Cedeno-Maldonado ◽  
J. A. Swader

Autotrophic growth, photosynthesis, and respiration ofChlorella sorokinianaShihira and Krauss were inhibited by the cupric ion, but photosynthesis was more sensitive than respiration. The percent inhibition was determined by the ratio of cells to cupric ions present. Photosynthesis and respiration were inhibited within 2 and 5 min, respectively, after adding 1.0 mM cupric ions.Chlorellacells which had been incubated for a short time in concentrations of the cupric ion that completely inhibited photosynthesis were not able to grow when cultured in a fresh medium without cupric ions, indicating high concentrations of the ion may have destroyed the photosynthetic apparatus and deprived the cells of their ability for autotrophic growth. Dark preincubation of the cells, as well as high bicarbonate concentrations in the assay medium, decreased inhibition. Treatment with cupric ions reduced the cellular chlorophyll and sulfhydryl content, but anaerobiosis, a condition that increased toxicity, had little effect on the sulfhydryl content. Electron transport in photosystems I and II in intactChlorellacells was inhibited, but the specific sites of inhibition in the photosynthetic electron transport chain could not be determined using intact cells.


1991 ◽  
Vol 37 (2) ◽  
pp. 141-147 ◽  
Author(s):  
Lori K. Maas ◽  
Thomas L. Glass

Cellobiose transport by the cellulolytic ruminal anaerobe Fibrobacter (Bacteroides) succinogenes was measured using randomly tritiated cellobiose. When assayed at the same concentration (1 mM), total cellobiose uptake was one-fourth to one-third that of total glucose uptake. The abilities of F. succinogenes to transport cellobiose or glucose were not affected by the sugar on which the cells were grown. Aspects of the simultaneous transport of [14C(U)]glucose and [3H(G)]cellobiose, the failure of high concentrations of cold glucose to compete with hypothetical [3H(G)] glucose (derived externally from [3H(G)]cellobiose), and differential metal-ion stimulation of cellobiose transport indicate a cellobiose permease, rather than cellobiase plus glucose permease, was responsible for cellobiose transport. Glucose (10-fold molar excess) partially inhibited cellobiose transport. This was enhanced by prior incubation of the cells with glucose, suggesting subsequent metabolism of the glucose was responsible for the inhibition. Compounds interfering with electron transport or maintenance of transmembrane ion gradients inhibited cellobiose uptake, indicating that active transport rather than a phosphoenolpyruvate:phosphotransferase system catalyzed cellobiose transport. Na+, but not Li+, stimulated cellobiose transport. Key words: Fibrobacter (Bacteroides) succinogenes, cellobiose transport, rumen bacteria.


1970 ◽  
Vol 25 (10) ◽  
pp. 1157-1159 ◽  
Author(s):  
A. Trebst ◽  
E. Harth ◽  
W. Draber

A halogenated benzoquinone has been found to inhibit the photosynthetic electron transport system in isolated chloroplasts. 2·10-6ᴍ of dibromo-thymoquinone inhibit the Hill- reaction with NADP, methylviologen or anthraquinone to 100%, but do not effect the photoreduction of NADP at the expense of an artificial electron donor. The Hill - reaction with ferricyanide is inhibited even at the high concentration of 2·10-5ᴍ of dibromo-thymoquinone to only 60%. The remaining reduction in the presence of the inhibitor reflects the rate of ferricyanide reduction by photosystem II. It is concluded that the inhibition of electron transport by the quinone occurs between photosystem I and II and close to or at the functional site of plastoquinone.


1980 ◽  
Vol 188 (2) ◽  
pp. 351-361 ◽  
Author(s):  
A C Stewart ◽  
D S Bendall

1. A cell-free preparation of membrane fragments was prepared from the thermophilic blue-green alga Phormidium laminosum by lysozyme treatment of the cells followed by osmotic shock to lyse the spheroplasts. The membrane fragments showed high rates of photosynthetic electron transport and O2 evolution (180-250 mumol of O2/h per mg of chlorophyll a with 2,6-dimethyl-1,4-benzoquinone as electron acceptor). O2-evolution activity was stable provided that cations (e.g. 10mM-Mg2+ or 100mM-Na+) or glycerol (25%, v/v) were present in the suspending medium. 2. The components of the electron-transport chain in P. laminosum were similar to those of other blue-green algae: the cells contained Pigment P700, plastocyanin, soluble high-potential cytochrome c-553, soluble low-potential cytochrome c-54 and membrane-bound cytochromes f, b-563 and b-559 (both low- and high-potential forms). The amounts and midpoint potentials of the membrane-bound cytochromes were similar to those in higher-plant chloroplasts. 3. Although O2 evolution in P. laminosum spheroplasts was resistant to high temperatures, thermal stability was not retained in the cell-free preparation. However, in contrast with higher plants, O2 evolution in P. laminosum membrane fragments was remarkably resistant to the non-ionic detergent Triton X-100.


Sign in / Sign up

Export Citation Format

Share Document