scholarly journals Activation of human platelet phospholipase C by ionophore A23187 is totally dependent upon cyclo-oxygenase products and ADP

1984 ◽  
Vol 222 (1) ◽  
pp. 103-110 ◽  
Author(s):  
S E Rittenhouse

Human platelets exposed to the Ca2+ ionophore A23187 form cyclo-oxygenase metabolites from liberated arachidonic acid and secrete dense granule substituents such as ADP. I have shown previously that A23187 causes activation of phospholipase A2 and some stimulation of phospholipase C. I now report that, in contrast to the case for thrombin, the activation of phospholipase C in response to ionophore is completely dependent upon the formation of cyclo-oxygenase products and the presence of ADP. The addition of A23187 to human platelets induces a transient drop in the amount of phosphatidylinositol 4,5-bisphosphate, a decrease in the amount of phosphatidylinositol, and the formation of diacylglycerol and phosphatidic acid. In addition, lysophosphatidylinositol and free arachidonic acid are produced. The presence of cyclo-oxygenase inhibitors or agents which remove ADP partially impairs these changes. When both types of inhibitor are present, the changes in phosphatidylinositol 4,5-bisphosphate and the formation of diacylglycerol and phosphatidic acid are blocked entirely, whereas formation of lysophosphatidylinositol and free arachidonic acid are relatively unaffected. The prostaglandin H2 analogue U46619 activates phospholipase C. This stimulation is inhibited partially by competitors for ADP. I conclude that phospholipase C is not activated by Ca2+ in the platelet, and suggest that stimulation is totally dependent upon a receptor coupled event.

1993 ◽  
Vol 69 (04) ◽  
pp. 394-396 ◽  
Author(s):  
R Malmgren ◽  
T Thorsen ◽  
A Nordvik ◽  
H Holmsen

SummaryThe effect of nitrogen-(N2-)microbubbles on platelets resembles that of common platelet agonists with respect to aggregation and secretion, but is considerably slower and is poorly inhibited by aspirin. This paper reports the effect of microbubbles on platelet phospholipase C activity in gelfiltered human platelets prelabelled with [32P]Pi ([32P]-GFP). The experiments were run in the presence of an ADP scavenging system in order to rule out effects of ADP. Stimulation of [32P]-GFP for 30 min with microbubbles caused a significant reduction in single platelets (p <0.0004) and a significant increase in 32P-activity in the phosphatidic acid (PA) fraction (p <0.02). Epinephrine potentiated the microbubble-induced reduction in single platelets (p <0.05), but did not enhance the amount of 32P in the platelet [32P]PA fraction. The 32P-radioactivity in the PI-fraction increased with time to a similar extent when [32P]-GFP was stirred for 30 min in absence of microbubbles as it did after 30 min of agonist exposure. There were no significant changes in the [32P]PIP and [32P]PIP2 fractions. Aspirin abolished the microbubble-induced increase in 32P-activity in the PA fraction, but had no significant effect on the reduction in single platelets. Aspirin had a small but significant, reducing effect on platelet aggregation induced by a combination of epinephrine and microbubbles (p <0.05). With epinephrine, however, aspirin did not completely abolish the increase in [32P]-PA. It is concluded that microbubbles alone cause platelets to aggregate by a novel mechanism that operates independent of cyclooxygenase-dependent arachidonic acid metabolites and phospholipase C activation.


1987 ◽  
Author(s):  
Michael F Crouch ◽  
Eduardo G Lapetina

The ability of cell surface receptor occupation to increase the activity of phospholipase A2 has been thought to be due to the prior activation of phospholipase C and an increase in the intracellular Ca2+ concentration. However, recent evidence from our and other laboratories has suggested that this may not be the case, but rather stimulation of phospholipase A2 may be under the control of separate receptor-activated events. We have investigated this further by comparing the ability of prostacyclin (PGI2) and epinephrine to alter platelet responses to thrombin and examining the resulting phospholipase A2 activities.Alpha-thrombin stimulated aggregation of human platelets, the formation of inositol phosphates and phosphatidic acid, mobilizaton of Ca2+ from internal stores and Ca2+ influx, protein phosporylation (47 kDa and 20 kDa) and arachidonic acid (AA) release. Each of these responses was partially inhibited by prostacyclin (PGI2) except that of AA release, which was abolished. In combination with epinephrine and PGI2, alpha-thrombin-induced aggregation, phosphatidic acid formation and protein phosphorylation were restored, but the release of AA only reached 50% of its control value. Epinephrine alone had no effect on any of these responses, either in the presence or absence of PGI2. Thus, alpha-thrombin-induced activation of phospholipase A2 is more sensitive to the effects of PGI2 than is phospholipase C, and supports the possibility that there are distinct control mechanisms for receptor activation of these enzymes. We are presently examining the role of Gs in the inhibition by PGI2 of platelet phospholipase A2 and of Gi in the thrombin stimulation of this enzyme


Reproduction ◽  
2000 ◽  
pp. 57-68 ◽  
Author(s):  
J Garde ◽  
ER Roldan

Spermatozoa undergo exocytosis in response to agonists that induce Ca2+ influx and, in turn, activation of phosphoinositidase C, phospholipase C, phospholipase A2, and cAMP formation. Since the role of cAMP downstream of Ca2+ influx is unknown, this study investigated whether cAMP modulates phospholipase C or phospholipase A2 using a ram sperm model stimulated with A23187 and Ca2+. Exposure to dibutyryl-cAMP, phosphodiesterase inhibitors or forskolin resulted in enhancement of exocytosis. However, the effect was not due to stimulation of phospholipase C or phospholipase A2: in spermatozoa prelabelled with [3H]palmitic acid or [14C]arachidonic acid, these reagents did not enhance [3H]diacylglycerol formation or [14C]arachidonic acid release. Spermatozoa were treated with the phospholipase A2 inhibitor aristolochic acid, and dibutyryl-cAMP to test whether cAMP acts downstream of phospholipase A2. Under these conditions, exocytosis did not occur in response to A23187 and Ca2+. However, inclusion of dibutyryl-cAMP and the phospholipase A2 metabolite lysophosphatidylcholine did result in exocytosis (at an extent similar to that seen when cells were treated with A23187/Ca2+ and without the inhibitor). Inclusion of lysophosphatidylcholine alone, without dibutyryl-cAMP, enhanced exocytosis to a lesser extent, demonstrating that cAMP requires a phospholipase A2 metabolite to stimulate the final stages of exocytosis. These results indicate that cAMP may act downstream of phospholipase A2, exerting a regulatory role in the exocytosis triggered by physiological agonists.


1990 ◽  
Vol 68 (2) ◽  
pp. 520-527 ◽  
Author(s):  
V. G. Mahadevappa ◽  
Frank Sicilia

In the present work we investigated the effect of serine esterase inhibitors such as 2-nitro-4-carboxyphenyl N,N-diphenylcarbamate (NCDC) and phenylmethylsulfonyl fluoride (PMSF), as well as the effect of mepacrine on thrombin-induced mobilization of arachidonic acid (AA) in human platelets. The inhibitor NCDC (0.6 mM) completely abolished the thrombin-induced activation of phospholipase C, phospholipase A2, and transacylase enzymes, whereas the pretreatment of platelets with PMSF (2 mM) resulted in a highly selective inhibition of phospholipase A2 and transacylase activities, with no marked effect on thrombin-induced activation of phospholipase C. The thrombin-induced release of [3H]AA from phosphatidylcholine and phosphatidylinositol was reduced by 90 and 56%, respectively, in the presence of PMSF. This inhibitor also caused a parallel inhibition in the accumulation of [3H]AA (85%) with little effect on thrombin-induced formation of [3H]phosphatidic acid (5%), whereas mepacrine (0.4 mM) caused a selective inhibition of phospholipase A2 and transacylase activities with concomitant stimulation of [3H]phosphatidic acid formation in intact human platelets. These results demonstrate that NCDC and PMSF (serine esterase inhibitors) do not affect agonist-induced activation of phospholipases that mobilize arachidonic acid through a common site. Our results further demonstrate that the inhibition of [3H]AA release observed in the presence of NCDC, PMSF, and mepacrine is primarily due to their direct effects on enzyme activities, rather than due to their indirect effects through formation of complexes between inhibitors and membrane phospholipids. Based upon these results, we also conclude that the combined hydrolysis of phosphatidylcholine and phosphatidylinositol by phospholipase A2 serves as a major source for eicosanoid biosynthesis in thrombin-stimulated human platelets.Key words: deacylation, phospholipids, thrombin, platelets, phospholipase A2.


1995 ◽  
Vol 311 (1) ◽  
pp. 189-195 ◽  
Author(s):  
P Ambs ◽  
M Baccarini ◽  
E Fitzke ◽  
P Dieter

In this study we have verified the existence of a cytosolic phospholipase A2 (cPLA2) in rat-liver macrophages. Stimulation of these cells with phorbol 12-myristate 13-acetate (PMA), zymosan and lipopolysaccharide (LPS), but not with the Ca(2+)-ionophore A23187, leads to phosphorylation of cPLA2 and activation of mitogen-activated protein (MAP) kinase, supporting the hypothesis that MAP kinase is involved in cPLA2 phosphorylation. We show furthermore, that the tyrosine kinase inhibitor genistein prevents the LPS- but not the PMA- or zymosan-induced phosphorylation of cPLA2 and activation of MAP kinase, indicating that tyrosine kinases participate in LPS- but not in PMA- and zymosan-induced cPLA2 phosphorylation and MAP kinase activation. Phosphorylation of cPLA2 does not strongly correlate with stimulation of the arachidonic acid (AA) cascade: (1) A23187, a potent stimulator of AA release, fails to induce cPLA2 phosphorylation; (2) withdrawal of extracellular Ca2+, which inhibits PMA-stimulated AA release (Dieter, Schulze-Specking and Decker (1988) Eur. J. Biochem. 177, 61-67), has no effect on PMA-induced phosphorylation of cPLA2; (3) LPS induces cPLA2 phosphorylation within minutes, whereas increased AA release upon treatment with LPS is detectable for the first time after 4 h; and (4) genistein, which prevents LPS-induced cPLA2 phosphorylation, does not inhibit AA release in response to LPS. From these data we suggest that a rise in intracellular Ca2+, but not phosphorylation of cPLA2, is essential for activation of the AA cascade in rat-liver macrophages.


1987 ◽  
Vol 253 (1) ◽  
pp. C113-C120 ◽  
Author(s):  
D. Schlondorff ◽  
S. DeCandido ◽  
J. A. Satriano

Angiotensin II stimulates prostaglandin (PG) E2 formation in mesangial cells cultured from rat renal glomeruli. The interactions between angiotensin II and PGE2 are important in modulating glomerular function. We examined the mechanism for stimulation of PGE2 production in mesangial cells using the putative diacylglycerol-lipase inhibitor RHC 80267 and trifluoperazine (TFP), an agent interfering with Ca2+-CaM-mediated processes. Although RHC 80267 inhibited diacylglycerol-lipase activity in mesangial cells, it did not influence PGE2 production in response to either angiotensin II or A23187. In contrast, TFP (50 microM) inhibited basal PGE2 production and stimulation by angiotensin II and A23187. TFP also decreased 14C release in response to angiotensin from cells prelabeled with [14C]arachidonic acid, which was associated with inhibition of 14C loss from phosphatidylinositol. In cells prelabeled with 32P, orthophosphate angiotensin II caused a rapid hydrolysis of phosphatidylinositol 4,5-bisphospate. TFP enhanced 32P labeling of phosphatidylinositides, but did not prevent the loss of phosphatidylinositol 4,5-bisphosphate in response to angiotensin. This was verified in cells prelabeled with myo-[3H]inositol where angiotensin stimulated formation of [3H]inositol trisphosphate. TFP enhanced formation of [3H]inositol trisphosphate both under basal- and angiotensin II-stimulated conditions. Thus TFP did not inhibit phospholipase C activation by angiotensin. Angiotensin II caused marked increases in [32P]lysophospholipids, indicating activation of also phospholipase A2. This process was inhibited by TFP. Taken together, these results are consistent with stimulation of both phospholipase C and A2 by angiotensin, the latter step responsible for the release of arachidonic acid and PGE2 formation. The activation of phospholipase A2, but not that of phospholipase C, is inhibited by TFP, perhaps by interference with calmodulin-dependent steps.


1987 ◽  
Vol 248 (3) ◽  
pp. 779-783 ◽  
Author(s):  
R M Kramer ◽  
G C Checani ◽  
D Deykin

We examined the effect of diacylglycerol on Ca2+-dependent phospholipase A2 from human platelets. Phospholipase A2 was solubilized and partially purified to a stable form in the presence of n-octyl beta-D-glucopyranoside (octyl glucoside), and its enzymic activity was determined with sonicated 2.5 microM-1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (arachidonoyl-PC) as substrate. Phospholipase A2 activity was increased when diacylglycerol was incorporated into the substrate arachidonoyl-PC. Stimulation was maximal in the presence of greater than or equal to 29 mol% (1 microM) diacylglycerol, and was greater than 4-fold for both 1,2-dioleoylglycerol and 1-stearoyl-2-arachidonoylglycerol. 1-Stearoyl-2-arachidonoylglycerol at concentrations of 2-5 mol% increased phospholipase A2 activity 1.3-1.8-fold. Exogenously added 1-oleoyl-2-acetylglycerol also enhanced phospholipase A2 activity, producing a maximal stimulation of 1.6-fold at a concentration of 25 microM. Comparative studies conducted with pancreatic, bee-venom and snake-venom phospholipase A2 showed that the activity of these extracellular phospholipases towards the arachidonoyl-PC substrate was also increased by diacylglycerol, but stimulation was less than observed for platelet phospholipase A2. Our results suggest that diacylglycerol, known to be generated in stimulated platelets, may enhance Ca2+-activated phospholipase A2.


1987 ◽  
Author(s):  
S Nakashima ◽  
T Tohmatsu ◽  
H Hattori ◽  
A Suganuma ◽  
Y Nozawa

Platelet activation is accompanied by the active metabolism of membrane phospholipids. Phosphoinositide breakdown by phospholipase C generates second messengers; inositol trisphosphate and diacylglycerol. Recently, it is suggested that GTP-binding protein is linked to the activation of phospholipase C as is true for adenylate cyclase. Although it is known that the receptor stimulation by agonists leads to generation of arachidonic acid, its molecular mechanism has not yet been clear. However, several studies in neutrophils and mast cells using pertussis toxin, have shown the possibility that a GTP-binding protein may act as an intermediary unit component between the receptor and phospholipase A2. The present study was therefore designed to examine the effect of GTP and its analogue GTPγS on the arachidonic acid release in saponin-permeabilized human platelets. GTP or GTPγS alone caused a small but significant liberation of arachidonic acid in permeabilized cells but not in intact cells. GTP or GTPγS was found to enhance thrombin-induced [3H]arachidonic acid release in saponi n-permeabi li zed human platelets. The release of arachidonic acid has been ascribed to activity of phospholipase A2 and/or to sequential action of phospholipase C and diacylglycerol lipase. Inhibitors of phospholipase C (neomycin)/ diacylglycerol lipase (RHC 80267) pathway of arachidonate liberation did not reduce the level of the [3H]arachidonic acid release. The loss of [3H]arachidonate radioactivity from phosphatidylcholine was almost complementary to the increment of released [3H]arachidonic acid, suggesting thrombin-induced hydrolysis of phosphatidylcholine by phospholipase A2. Although phospholipase A2 usually are described as having a requirement for calcium, the effect of GTPγS was more evident at lower calcium concentrations (buffer>0.1 mM>1.0 mM). These data thus indicate that release of arachidonic acid by phospholipase A2 in saponin-treated platelets is closely linked to GTP-binding protein which may decrease the calcium requirement for phospholipase A2 activation.


Sign in / Sign up

Export Citation Format

Share Document