Angiotensin II stimulates phospholipases C and A2 in cultured rat mesangial cells

1987 ◽  
Vol 253 (1) ◽  
pp. C113-C120 ◽  
Author(s):  
D. Schlondorff ◽  
S. DeCandido ◽  
J. A. Satriano

Angiotensin II stimulates prostaglandin (PG) E2 formation in mesangial cells cultured from rat renal glomeruli. The interactions between angiotensin II and PGE2 are important in modulating glomerular function. We examined the mechanism for stimulation of PGE2 production in mesangial cells using the putative diacylglycerol-lipase inhibitor RHC 80267 and trifluoperazine (TFP), an agent interfering with Ca2+-CaM-mediated processes. Although RHC 80267 inhibited diacylglycerol-lipase activity in mesangial cells, it did not influence PGE2 production in response to either angiotensin II or A23187. In contrast, TFP (50 microM) inhibited basal PGE2 production and stimulation by angiotensin II and A23187. TFP also decreased 14C release in response to angiotensin from cells prelabeled with [14C]arachidonic acid, which was associated with inhibition of 14C loss from phosphatidylinositol. In cells prelabeled with 32P, orthophosphate angiotensin II caused a rapid hydrolysis of phosphatidylinositol 4,5-bisphospate. TFP enhanced 32P labeling of phosphatidylinositides, but did not prevent the loss of phosphatidylinositol 4,5-bisphosphate in response to angiotensin. This was verified in cells prelabeled with myo-[3H]inositol where angiotensin stimulated formation of [3H]inositol trisphosphate. TFP enhanced formation of [3H]inositol trisphosphate both under basal- and angiotensin II-stimulated conditions. Thus TFP did not inhibit phospholipase C activation by angiotensin. Angiotensin II caused marked increases in [32P]lysophospholipids, indicating activation of also phospholipase A2. This process was inhibited by TFP. Taken together, these results are consistent with stimulation of both phospholipase C and A2 by angiotensin, the latter step responsible for the release of arachidonic acid and PGE2 formation. The activation of phospholipase A2, but not that of phospholipase C, is inhibited by TFP, perhaps by interference with calmodulin-dependent steps.

Reproduction ◽  
2000 ◽  
pp. 57-68 ◽  
Author(s):  
J Garde ◽  
ER Roldan

Spermatozoa undergo exocytosis in response to agonists that induce Ca2+ influx and, in turn, activation of phosphoinositidase C, phospholipase C, phospholipase A2, and cAMP formation. Since the role of cAMP downstream of Ca2+ influx is unknown, this study investigated whether cAMP modulates phospholipase C or phospholipase A2 using a ram sperm model stimulated with A23187 and Ca2+. Exposure to dibutyryl-cAMP, phosphodiesterase inhibitors or forskolin resulted in enhancement of exocytosis. However, the effect was not due to stimulation of phospholipase C or phospholipase A2: in spermatozoa prelabelled with [3H]palmitic acid or [14C]arachidonic acid, these reagents did not enhance [3H]diacylglycerol formation or [14C]arachidonic acid release. Spermatozoa were treated with the phospholipase A2 inhibitor aristolochic acid, and dibutyryl-cAMP to test whether cAMP acts downstream of phospholipase A2. Under these conditions, exocytosis did not occur in response to A23187 and Ca2+. However, inclusion of dibutyryl-cAMP and the phospholipase A2 metabolite lysophosphatidylcholine did result in exocytosis (at an extent similar to that seen when cells were treated with A23187/Ca2+ and without the inhibitor). Inclusion of lysophosphatidylcholine alone, without dibutyryl-cAMP, enhanced exocytosis to a lesser extent, demonstrating that cAMP requires a phospholipase A2 metabolite to stimulate the final stages of exocytosis. These results indicate that cAMP may act downstream of phospholipase A2, exerting a regulatory role in the exocytosis triggered by physiological agonists.


1990 ◽  
Vol 10 (4) ◽  
pp. 353-362 ◽  
Author(s):  
Nashrudeen Hack ◽  
Paula Clayman ◽  
Karl Skorecki

We have previously demonstrated phospholipase C (PLC) independent activation of phospholipase A2(PLA2) by epidermal growth factor (EGF) in glomerular mesangial cells in culture. In the current study using glass beads to permeabilize [3H]- or [14C]-arachidonate labelled mesangial cells we demonstrate that guanine nucleotides modulate the EGF-mediated stimulation of arachidonic acid release (75% inhibition with 100 μM GDPβS and 108% augmentation with 100 μM GTPγS). GTPγS alone stimulated both the release of free arachidonic acid and production of diacylglycerol (DAG), while EGF itself neither stimulated DAG nor augmented the DAG response to GTPγS. These findings suggest the intermediacy of a G-protein in PLC-independent stimulation of PLA2 by a growth factor, and provide a model system for determining the relationship between G-protein intermediacy and the intrinsic tyrosine kinase activity of the growth factor receptor.


1984 ◽  
Vol 223 (3) ◽  
pp. 855-859 ◽  
Author(s):  
J Pfeilschifter ◽  
A Kurtz ◽  
C Bauer

[Arginine]vasopressin (AVP) stimulates maximal prostaglandin E2 production in cultured rat renal mesangial cells within 2 min. As early as 10s after addition of AVP (10(-6)M) a significant loss of radioactivity from phosphatidylinositol 4,5-bisphosphate but not from phosphatidylinositol 4-phosphate and phosphatidylinositol was observed in cells prelabelled with 32Pi. Cells labelled with [14C]arachidonic acid showed an increase of label in 1,2-diacylglycerol after 15 s and in phosphatidic acid after 30 s upon stimulation with AVP. Pretreatment of the cells with indomethacin (10(-5)M) did not abolish the effect of AVP on the increased labelling of phosphatidic acid.


1987 ◽  
Author(s):  
S Nakashima ◽  
T Tohmatsu ◽  
H Hattori ◽  
A Suganuma ◽  
Y Nozawa

Platelet activation is accompanied by the active metabolism of membrane phospholipids. Phosphoinositide breakdown by phospholipase C generates second messengers; inositol trisphosphate and diacylglycerol. Recently, it is suggested that GTP-binding protein is linked to the activation of phospholipase C as is true for adenylate cyclase. Although it is known that the receptor stimulation by agonists leads to generation of arachidonic acid, its molecular mechanism has not yet been clear. However, several studies in neutrophils and mast cells using pertussis toxin, have shown the possibility that a GTP-binding protein may act as an intermediary unit component between the receptor and phospholipase A2. The present study was therefore designed to examine the effect of GTP and its analogue GTPγS on the arachidonic acid release in saponin-permeabilized human platelets. GTP or GTPγS alone caused a small but significant liberation of arachidonic acid in permeabilized cells but not in intact cells. GTP or GTPγS was found to enhance thrombin-induced [3H]arachidonic acid release in saponi n-permeabi li zed human platelets. The release of arachidonic acid has been ascribed to activity of phospholipase A2 and/or to sequential action of phospholipase C and diacylglycerol lipase. Inhibitors of phospholipase C (neomycin)/ diacylglycerol lipase (RHC 80267) pathway of arachidonate liberation did not reduce the level of the [3H]arachidonic acid release. The loss of [3H]arachidonate radioactivity from phosphatidylcholine was almost complementary to the increment of released [3H]arachidonic acid, suggesting thrombin-induced hydrolysis of phosphatidylcholine by phospholipase A2. Although phospholipase A2 usually are described as having a requirement for calcium, the effect of GTPγS was more evident at lower calcium concentrations (buffer>0.1 mM>1.0 mM). These data thus indicate that release of arachidonic acid by phospholipase A2 in saponin-treated platelets is closely linked to GTP-binding protein which may decrease the calcium requirement for phospholipase A2 activation.


1985 ◽  
Vol 248 (1) ◽  
pp. C119-C126 ◽  
Author(s):  
D. Schlondorff ◽  
J. Perez ◽  
J. A. Satriano

The mechanism of arachidonic acid release and prostaglandin E2 (PGE2) synthesis was studied in cultured mesangial cells from rat kidneys. Both the ionophore A23187 and angiotensin II stimulated radioimmunoassayable PGE2 synthesis. The effect of angiotensin occurred within minutes, with half-maximal stimulation around 10(-9) M. In cells prelabeled with [14C]arachidonate, A23187 caused release of [14C]-arachidonate from all phospholipids. In contrast, angiotensin II caused preferential release of [14C]arachidonate from phosphatidylinositol, associated with a significant increase in 14C-labeled phosphatidic acid, mono- and diacylglyceride, and arachidonate. These results indicate that angiotensin preferentially, but not exclusively, stimulates a phosphatidylinositol-specific phospholipase C, whereas A23187 results in unspecific stimulation of phospholipases. The tight coupling between an angiotensin-responsive phospholipid-arachidonate pool and cyclooxygenase may be responsible for the specificity of the response to angiotensin.


1988 ◽  
Vol 253 (1) ◽  
pp. 93-102 ◽  
Author(s):  
R J Schimmel

Previous studies of brown adipocytes identified an increased breakdown of phosphoinositides after selective alpha 1-adrenergic-receptor activation. The present paper reports that this response, elicited with phenylephrine in the presence of propranolol and measured as the accumulation of [3H]inositol phosphates, is accompanied by increased release of [3H]arachidonic acid from cells prelabelled with [3H]arachidonic acid. Differences between stimulated arachidonic acid release and formation of inositol phosphates included a requirement for extracellular Ca2+ for stimulated release of arachidonic acid but not for the formation of inositol phosphates and the preferential inhibition of inositol phosphate formation by phorbol 12-myristate 13-acetate. The release of arachidonic acid in response to phenylephrine was associated with an accumulation of [3H]arachidonic acid-labelled diacylglycerol, and this response was not dependent on extracellular Ca2+ but was partially prevented by treatment with the phorbol ester. The release of arachidonic acid was also stimulated by melittin, which increases the activity of phospholipase A2, by ionophore A23187, by lipolytic stimulation with forskolin and by exogenous phospholipase C. The arachidonic acid response to phospholipase C was completely blocked by RHC 80267, an inhibitor of diacylglycerol lipase, but this inhibitor had no effect on release stimulated with melittin or A23187 and inhibited phenylephrine-stimulated release by only 40%. The arachidonate response to forskolin was additive with the responses to either phenylephrine or exogenous phospholipase C. These data indicate that brown adipocytes are capable of releasing arachidonic acid from neutral lipids via triacylglycerol lipolysis, and from phospholipids via phospholipase A2 or by the sequential activities of phospholipase C and diacylglycerol lipase. Our findings also suggest that the action of phenylephrine to promote the liberation of arachidonic acid utilizes both of these reactions.


1984 ◽  
Vol 222 (1) ◽  
pp. 103-110 ◽  
Author(s):  
S E Rittenhouse

Human platelets exposed to the Ca2+ ionophore A23187 form cyclo-oxygenase metabolites from liberated arachidonic acid and secrete dense granule substituents such as ADP. I have shown previously that A23187 causes activation of phospholipase A2 and some stimulation of phospholipase C. I now report that, in contrast to the case for thrombin, the activation of phospholipase C in response to ionophore is completely dependent upon the formation of cyclo-oxygenase products and the presence of ADP. The addition of A23187 to human platelets induces a transient drop in the amount of phosphatidylinositol 4,5-bisphosphate, a decrease in the amount of phosphatidylinositol, and the formation of diacylglycerol and phosphatidic acid. In addition, lysophosphatidylinositol and free arachidonic acid are produced. The presence of cyclo-oxygenase inhibitors or agents which remove ADP partially impairs these changes. When both types of inhibitor are present, the changes in phosphatidylinositol 4,5-bisphosphate and the formation of diacylglycerol and phosphatidic acid are blocked entirely, whereas formation of lysophosphatidylinositol and free arachidonic acid are relatively unaffected. The prostaglandin H2 analogue U46619 activates phospholipase C. This stimulation is inhibited partially by competitors for ADP. I conclude that phospholipase C is not activated by Ca2+ in the platelet, and suggest that stimulation is totally dependent upon a receptor coupled event.


2002 ◽  
Vol 82 (1) ◽  
pp. 131-185 ◽  
Author(s):  
Richard J. Roman

Recent studies have indicated that arachidonic acid is primarily metabolized by cytochrome P-450 (CYP) enzymes in the brain, lung, kidney, and peripheral vasculature to 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) and that these compounds play critical roles in the regulation of renal, pulmonary, and cardiac function and vascular tone. EETs are endothelium-derived vasodilators that hyperpolarize vascular smooth muscle (VSM) cells by activating K+channels. 20-HETE is a vasoconstrictor produced in VSM cells that reduces the open-state probability of Ca2+-activated K+channels. Inhibitors of the formation of 20-HETE block the myogenic response of renal, cerebral, and skeletal muscle arterioles in vitro and autoregulation of renal and cerebral blood flow in vivo. They also block tubuloglomerular feedback responses in vivo and the vasoconstrictor response to elevations in tissue Po2both in vivo and in vitro. The formation of 20-HETE in VSM is stimulated by angiotensin II and endothelin and is inhibited by nitric oxide (NO) and carbon monoxide (CO). Blockade of the formation of 20-HETE attenuates the vascular responses to angiotensin II, endothelin, norepinephrine, NO, and CO. In the kidney, EETs and 20-HETE are produced in the proximal tubule and the thick ascending loop of Henle. They regulate Na+transport in these nephron segments. 20-HETE also contributes to the mitogenic effects of a variety of growth factors in VSM, renal epithelial, and mesangial cells. The production of EETs and 20-HETE is altered in experimental and genetic models of hypertension, diabetes, uremia, toxemia of pregnancy, and hepatorenal syndrome. Given the importance of this pathway in the control of cardiovascular function, it is likely that CYP metabolites of arachidonic acid contribute to the changes in renal function and vascular tone associated with some of these conditions and that drugs that modify the formation and/or actions of EETs and 20-HETE may have therapeutic benefits.


Sign in / Sign up

Export Citation Format

Share Document