scholarly journals Effect of guanosine triphosphate on the release and uptake of Ca2+ in saponin-permeabilized macrophages and the skeletal-muscle sarcoplasmic reticulum

1987 ◽  
Vol 242 (1) ◽  
pp. 253-260 ◽  
Author(s):  
T Hamachi ◽  
M Hirata ◽  
Y Kimura ◽  
T Ikebe ◽  
T Ishimatsu ◽  
...  

The effects of GTP, with or without polyethylene glycol (PEG), on the release and uptake of Ca2+ were examined by using saponin-treated macrophages and sarcoplasmic reticulum isolated from skeletal muscles. The application of GTP in concentrations in the range 0.1-10 microM induced a gradual, small but sustained release of Ca2+ from the saponin-treated macrophages. The addition of PEG to GTP markedly enhanced the GTP-mediated Ca2+ release. GTP at the same concentration ranges used for Ca2+ release decreased the amount of Ca2+ uptake, at a steady state, but stimulated the rate of Ca2+ accumulation in the presence of oxalate, the Ca2+-precipitating anion. The addition of PEG abolished the GTP-evoked stimulation of Ca2+ accumulation in the presence of oxalate. The stimulating effect on the rate of Ca2+ accumulation by GTP and its elimination by PEG were not due to changes in the permeability of oxalate by either GTP or PEG, or both. The Ca2+-releasing effect of GTP without PEG was enhanced by eliminating the uptake activity by decreasing the content of ATP. These results indicate that GTP has an inherent activity to release Ca2+ from non-mitochondrial intracellular stores of saponin-treated macrophages, and PEG enhances the GTP-mediated Ca2+ release, partly owing to its eliminating effect on GTP-stimulated Ca2+ uptake activity. These effects of GTP observed with saponin-permeabilized macrophages were not apparent in the isolated skeletal-muscle sarcoplasmic reticulum.

FEBS Letters ◽  
1990 ◽  
Vol 259 (2) ◽  
pp. 269-272 ◽  
Author(s):  
F.Norman Briggs ◽  
K.Francis Lee ◽  
Joseph J. Feher ◽  
Andrew S. Wechsler ◽  
Kay Ohiendieck ◽  
...  

1997 ◽  
Vol 272 (5) ◽  
pp. C1420-C1428 ◽  
Author(s):  
A. Nori ◽  
K. A. Nadalini ◽  
A. Martini ◽  
R. Rizzuto ◽  
A. Villa ◽  
...  

Calsequestrin (CS) is the junctional sarcoplasmic reticulum (jSR) Ca2+ binding protein responsible for intraluminal Ca2+ storage. The targeting mechanisms of CS to the jSR are yet to be unraveled. The nine-amino acid epitope of the influenza virus hemoagglutinin (referred to as HA1) was added at the COOH-terminal of CS by polymerase chain reaction cloning. The HA1-tagged CS cDNA was transiently transfected in either HeLa cells, myogenic cell lines, such as C2 and L8 cells, myoblasts of rat skeletal muscle primary cultures, or regenerating soleus muscle fibers of adult rats. The expression and intracellular localization of chimeric CS-HA1 were monitored by epifluorescence and confocal microscopy using either anti-CS antibodies or anti-HA1 antibodies. About 30% of transfected HeLa cells and 20-40% of myogenic cells expressed CS-HA1 into intracellular compartments, such as the perinuclear cisternae of endoplasmic reticulum (ER). Myoblasts of newborn rat skeletal muscles were first transfected and subsequently stimulated to differentiate into myotubes. CS-HA1 was detected in approximately 20% of transfected myotubes and did not affect CS distribution in myotubes. In the soleus muscle of adult rat, intramuscular injection of bupivacaine induced necrosis followed by regeneration. In vivo transfection of HA1-tagged CS cDNA in regenerating skeletal muscles determined expression in a few skeletal muscle fibers; CS-HA1 was localized only in jSR, as judged by confocal microscopy of longitudinal sections. The present results show that chimeric CS-HA1 is correctly sorted to ER/SR compartments and that the free COOH-terminal is not requested for sorting, retention, and segregation of CS to the SR.


1996 ◽  
Vol 51 (7-8) ◽  
pp. 591-598 ◽  
Author(s):  
M. Nogues ◽  
A. Cuenda ◽  
F. Henao ◽  
C. Gutiérrez-Merino

Abstract The glycogenolytic-sarcoplasmic reticulum complex from rat skeletal muscle accumulates Ca2+ upon stimulation of glycogen phosphorolysis in the absence of added ATP. It is shown that an efficient Ca2+ uptake involves the sequential action of glycogen phosphorylase, phosphoglucomutase and hexokinase, which generate low concentrations of ATP (approximately 1 -2 μм) compartmentalized in the immediate vicinity of the sarcoplasmic reticulum Ca2+, Mg2+-ATPase (the Ca2+ pump). The Ca2+ uptake supported by glycogenolysis in this subcellular structure is strongly stimulated by micromolar concentrations of AMP, showing that the glycogen phosphorylase associated with this complex is in the dephosphorylated b form. The results point out that the flux through this compartmentalized metabolic pathway should be enhanced in physiological conditions leading to increased AMP concentrations in the sarcoplasm, such as long-lasting contractions and in ischemic muscle.


1996 ◽  
Vol 271 (2) ◽  
pp. C540-C546 ◽  
Author(s):  
M. Beltran ◽  
R. Bull ◽  
P. Donoso ◽  
C. Hidalgo

The effect of halothane on calcium release kinetics was studied in triad-enriched sarcoplasmic reticulum vesicles from frog skeletal muscle. Release from vesicles passively equilibrated with 3 mM 45CaCl2 was measured in the millisecond time range by use of a fast-filtration system. Halothane (400 microM) increased release rate constants at pH 7.1 and 7.4 as a function of extravesicular pCa. In contrast, halothane at pH 6.8 produced the same stimulation of release from pCa 7.0 to 3.0; no release took place in these conditions in the absence of halothane. Halothane shifted the calcium activation curve at pH 7.1, but not at pH 7.4, to the left and increased channel open probability at pH 7.1 in the cis pCa range of 7.0 to 5.0. These results indicate that cytosolic pCa and pH modulate the stimulatory effects of halothane on calcium release. Furthermore, halothane stimulated release in frog skeletal muscle at low pH and resting calcium concentration, indicating that in frog muscle halothane can override the closing of the release channels produced by these conditions, as it does in malignant hyperthermia-susceptible porcine muscle.


2004 ◽  
Vol 379 (2) ◽  
pp. 505-512 ◽  
Author(s):  
Alessandra NORI ◽  
Elena BORTOLOSO ◽  
Federica FRASSON ◽  
Giorgia VALLE ◽  
Pompeo VOLPE

CS (calsequestrin) is an acidic glycoprotein of the SR (sarcoplasmic reticulum) lumen and plays a crucial role in the storage of Ca2+ and in excitation–contraction coupling of skeletal muscles. CS is synthesized in the ER (endoplasmic reticulum) and is targeted to the TC (terminal cisternae) of SR via mechanisms still largely unknown, but probably involving vesicle transport through the Golgi complex. In the present study, two mutant forms of Sar1 and ARF1 (ADP-ribosylation factor 1) were used to disrupt cargo exit from ER-exit sites and intra-Golgi trafficking in skeletal-muscle fibres respectively. Co-expression of Sar1-H79G (His79→Gly) and recombinant, epitope-tagged CS, CSHA1 (where HA1 stands for nine-amino-acid epitope of the viral haemagglutinin 1), barred segregation of CSHA1 to TC. On the other hand, expression of ARF1-N126I altered the subcellular localization of GM130, a cis-medial Golgi protein in skeletal-muscle fibres and myotubes, without interfering with CSHA1 targeting to either TC or developing SR. Thus active budding from ER-exit sites appears to be involved in CS targeting and routing, but these processes are insensitive to modification of intracellular vesicle trafficking and Golgi complex disruption caused by the mutant ARF1-N126I. It also appears that CS routing from ER to SR does not involve classical secretory pathways through ER–Golgi intermediate compartments, cis-medial Golgi and trans-Golgi network.


1976 ◽  
Vol 29 (6) ◽  
pp. 459
Author(s):  
Douglas J Horgan

The calcium-stimulated (extra) ATPase and calcium uptake activities of sarcoplasmic reticulum (SR) preparations treated with aqueous heptane mixtures were compared with those of untreated SR, and with those of SR treated with aqueous ether. Both treatments altered the kinetic behaviour of the extra ATPase, the Lineweaver-Burk plot being changed from its normal non-linear shape to a straight line. Kinetic constants, Vma ., Km for ATP and KI for phosphate, were measured. The extra ATPase activity of heptane-treated SR was inhibited by phosphate as was that of ether-treated SR, to a lesser extent. The magnitude of this inhibition by phosphate was found to be considerably less than the degree of stimulation of the extra ATPase activity of untreated SR caused by phosphate through its calcium-precipitating action. The steady-state concentrations of the phosphoryl-enzyme intermediates were measured and together with the K m and K, values they indicate that the binding of ATP to heptane-treated SR is weaker than it is to untreated SR, and that phosphate is an efficient competitor for the binding sites.


2019 ◽  
Vol 29 (2) ◽  
Author(s):  
Manuela Lavorato ◽  
Ramesh Iyer ◽  
Clara Franzini-Armstrong

Using a variety of technical approaches, we have detected the presence of continuous triads that cover the entire length of T tubules in the main white body muscles of several small fish. This is in contrast to the discontinuous association of sarcoplasmic reticulum with T tubules in the red muscles from the same fish as well as in all other previously described muscles in a large variety of skeletal muscles. We suggest that continuous triads are permissible only in muscle fibers that are not normally subject to significant changes in sarcomere length during normal in vivo activity, as is the case for white muscles in the trunk of fish.


1997 ◽  
Vol 272 (4) ◽  
pp. C1087-C1098 ◽  
Author(s):  
E. E. Burmeister Getz ◽  
S. L. Lehman

The models of the sarcoplasmic reticulum (SR) Ca pump used to simulate Ca kinetics in muscle fibers are simple but inconsistent with data on Ca binding or steady-state uptake. We develop a model of the SR pump that is consistent with data on transient and steady-state Ca removal and has rate constants identified under near-physiological conditions. We also develop models of the other main Ca-binding proteins in skeletal muscle: troponin C and parvalbumin. These models are used to simulate Ca transients in cut fibers during and after depolarizing pulses. Simulations using the full SR pump model are contrasted with simulations using a Michaelis-Menten (MM) approximation to SR pump kinetics. The MM pump underestimates the amount of Ca released during depolarization, underestimates the initial rate of Ca binding by the pump, and overestimates the later rate of Ca pumping. These errors are due to fast initial binding by the SR pump, which is neglected in the MM approximation.


Sign in / Sign up

Export Citation Format

Share Document