scholarly journals Identification of a liver growth factor as an albumin-bilirubin complex

1987 ◽  
Vol 243 (2) ◽  
pp. 443-448 ◽  
Author(s):  
J J Díaz-Gil ◽  
J G Gavilanes ◽  
G Sánchez ◽  
R García-Cañero ◽  
J M García-Segura ◽  
...  

We have reported the purification and characterization of a protein that behaves as a liver growth factor, showing activity either in vivo or in vitro [Díaz-Gil et al. (1986) Biochem. J. 235, 49-55]. In the present paper, we identify this liver growth factor (LGF) as an albumin-bilirubin complex. This conclusion is supported by the results of chemical and spectroscopic characterization of this protein as well as by experiments in vivo. Incubation of albumin isolated from normal rats with bilirubin/albumin molar ratios (r) resulted (when r = 1 or 2) in a complex with liver DNA synthesis promoter activity identical with that of LGF. The exact amount of bilirubin bound to albumin was assessed by fluorescence and c.d. spectra. This albumin-bilirubin complex showed the same dose-dependence profile as LGF either at low or high dose of protein injected per mouse. Both LGF and albumin-bilirubin complex produced similar increases in the mitotic index of mouse hepatocytes in vivo. A new mechanism for the onset of the hepatic regenerative process is proposed.

2005 ◽  
Vol 53 (10) ◽  
pp. 1181-1187 ◽  
Author(s):  
Sharyn Bord ◽  
Deborah C. Ireland ◽  
Pierre Moffatt ◽  
Gethin P. Thomas ◽  
Juliet E. Compston

Osteocrin (Ostn), a bone-active molecule, has been shown in animals to be highly expressed in cells of the osteoblast lineage. We have characterized this protein in human cultured primary human osteoblasts, in developing human neonatal bone, and in iliac crest bone biopsies from adult women. In vivo, Ostn expression was localized in developing human neonatal rib bone, with intense immunoreactivity in osteoblasts on bone-forming surfaces, in newly incorporated osteocytes, and in some late hypertrophic chondrocytes. In adult bone, Ostn expression was specifically localized to osteoblasts and young osteocytes at bone-forming sites. In vitro, Ostn expression decreased time dependently ( p<0.02) in osteoblasts cultured for 2, 3, and 6 days. Expression was further decreased in cultures containing 200 nM hydrocortisone by 1.5-, 2.3-, and 3.1-fold ( p<0.05) at the same time points. In contrast, alkaline phosphatase expression increased with osteoblast differentiation ( p<0.05). Low-dose estradiol decreased Ostn expression time dependently ( p<0.05), whereas Ostn expression in cultures treated with high-dose estradiol was not significantly changed. These results demonstrate that Ostn is expressed in human skeletal tissue, particularly in osteoblasts in developing bone and at sites of bone remodeling, suggesting a role in bone formation. Thus, Ostn provides a marker of osteoblast lineage cells and appears to correlate with osteoblast activity.


2021 ◽  
Vol 17 (5) ◽  
pp. 889-900
Author(s):  
Cuizhen Sun ◽  
Dianju He ◽  
Yonghua Qi ◽  
Guiqin Zhang ◽  
Qiujin Huang

In the current study, we hypothesized that the electrospun scaffold chitosan (CS)/polycaprolactone (PCL)/titanium dioxide (TiO2) could be prepared by combining CS, PCL, and TiO2 nanoparticles (TiO2 NPs) using an electrospinning technique for wound dressing applications. The CS/PCL/TiO2 electrospun scaffold was prepared and characterized by UV-Vis, SEM, TEM, FTIR, and XRD analyses. Based on the UV-Vis analysis, the incorporation of CS/PCL on the surface of TiO2 NPs affected their optical properties. Further, CS/PCL and CS/PCL/TiO2 were found to have uniform distribution in fiber diameter with no bead morphology, as confirmed by SEM. The XRD spectrum of the CS/PCL/TiO2 revealed that the TiO2 NPs were adequately mixed with the CS/PCL solution, exhibiting the planes of TiO2 peaks (112), (105), (204), (116), and (301), which aligned well with the lattice structure. The antibacterial activity of CS/PCL/TiO2 against Staphylococcus aureus and Escherichia coli was evaluated using the zone of inhibition method. By testing the cytocompatibility of CS/PCL/TiO2 in vitro, this dressing was found to have a less toxic nature. In addition, In Vivo wound healing studies showed that the dressing prepared with the CS/PCL/TiO2 electrospun scaffold improved wound healing compared to that prepared with CS/PCL alone. The above results strongly support the use of CS/PCL/TiO2 electrospun scaffold as an effective dressing for wound healing.


Blood ◽  
2002 ◽  
Vol 100 (12) ◽  
pp. 3925-3929 ◽  
Author(s):  
Therese Standal ◽  
Magne Borset ◽  
Stig Lenhoff ◽  
Finn Wisloff ◽  
Berit Stordal ◽  
...  

Insulinlike growth factor 1 (IGF-1) has growth-promoting effects on myeloma cells in vitro as well as in vivo. In this study, we measured the concentration of IGF-1 and its major binding protein, IGF- binding protein 3 (IGFBP-3), in serum from 127 patients with multiple myeloma. Serum had been drawn at the time of diagnosis, before treatment with high-dose melphalan. IGFBP-3 in myeloma patients (1.6 ± 0.73 μg/mL; mean ± SD) was significantly decreased compared to healthy age- and sex-matched controls (2.2 ± 0.42 μg/mL). However, IGFBP-3 had no prognostic value in this study. The mean IGF-1 level did not differ between myeloma patients (17.8 ± 7.7 nM) and controls (17.3 ± 5.6 nM). Nevertheless, IGF-1 was a strong indicator of prognosis. After 80 months of follow-up, myeloma patients with low levels (< 13 nM) of serum IGF-1 had not reached median survival. In the patient group with IGF-1 levels above 13 nM, median survival was 62 months (P = .006). These findings support the hypothesis of a role for IGF-1 in myeloma disease progression.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 550-550
Author(s):  
Addolorata M.L. Coluccia ◽  
Teresa Cirulli ◽  
Paola Neri ◽  
Franco Dammacco ◽  
Pierfrancesco Tassone ◽  
...  

Abstract Multiple myeloma (MM) is characterized by a clonal proliferation of immunoglobulin-secreting plasma cells in the bone-marrow (BM) and remains an incurable disease, despite the use of high-dose chemotherapies. Since a marked (BM)-angiogenesis is the hallmark of MM, but not of monoclonal gammopathies of undetermined significance (MGUS), validation of novel agents targeting MM tumor cells and their permissive BM-stroma is crucial to improve patient outcome. Patients fulfilling the International Myeloma Working Group diagnostic criteria for MM (n = 21) and MGUS (n = 14) were studied. Healthy donors or patients with benign anemia (due to vitamin B12 deficiency) were also incuded as controls. In plasma cells and endothelial cells (ECs) isolated from BM-aspirates by anti-CD138 and Ulex Europaeus agglutinin-1 (UEA-1) coated-beads, we dissected the contribution of activity against individual targets such as platelet-derived growth factor (PDGF)-receptor beta (PDGF-Rb) and c-Src tyrosine kinases (TKs), to the anti-tumor/vessel efficacy of dasatinib (BMS-354825), a novel orally bioavailable TK inhibitor. The PDGF-BB/PDGF-Rb kinase-axis was found constitutively activated in plasma cells from patients with MM but not with MGUS or benign anemias, thus supporting its pathophysiological role in MM. PDGF-Rb activated, independently of vascular endothelial growth factor (VEGF)-receptors (VEGF-R1 and VEGF-R2), the mitogen-activated protein kinases (ERK1/2) and the phosphatidylinositol 3-kinase (PI3-K)/AKT-dependent cascade, thereby increasing MM plasma cell growth. Expression of PDGF-Rb, at both mRNA and protein levels, was also increased in MMECs compared to MGECs, correlating with AKT phosphorylation. Exposure to recombinant PDGF-BB or conditioned media from MM plasma cells triggered PDGF-Rb phosphorylation and MMEC migration and spontaneous sprouting in vitro (both being mandatory for angiogenesis). Dasatinib abrogated PDGF-elicited tumor/vessel growth and impaired VEGF-signaling via c-Src TK-inhibition (IC50=25–100nM) in both MM-patient tumor and ECs. The use of small-interfering (si)-RNAs validated c-Src as a key VEGF-downstream effector of MMEC proliferation, migration and capillarogenesis in vitro. Nevertheless, the inhibitory effect elicited by siSrc was partially rescued by recombinant PDGF-BB which sustained the expression of pro-angiogenic factors such as VEGF, interleukin (IL)-8, basic fibroblast growth factor (bFGF), and hepatocyte growth factor (HGF) in MMECs. Dasatinib reversed all these transcriptional effects, thereby abrogating MMEC angiogenesis in the CAM assay as well as the neovascularization and tumor growth of MM-xenografts in vivo. More importantly, low-dose dasatinib showed synergistic cytotoxicity in vitro when tested in combination with conventional MM drugs (i.e. bortezomib and thalidomide), thereby increasing therapeutic efficacy and overcoming drug resistance. These findings indicate that: the PDGF-BB/PDGF-Rb kinase-axis elicits direct effects on MM plasma cells and could promote the MM “angiogenic switch”, hence disease progression; the inhibition of this pathway could provide the rationale for clinical trials with dasatinib which interferes with shared growth-signaling cascades in MM-patient isolated plasma cells and ECs, involving PDGF-Rb and cytosolic c-Src TKs.


Sign in / Sign up

Export Citation Format

Share Document