scholarly journals Secretion and storage of newly synthesized hepatic triacylglycerol fatty acids in vivo in different nutritional states and in diabetes

1988 ◽  
Vol 255 (3) ◽  
pp. 929-935 ◽  
Author(s):  
J M Duerden ◽  
G F Gibbons

Hepatic lipid synthesis was measured in rats in vivo with 3H2O, and the appearance of label in triacylglycerol and its constituent fatty acid and glycerol moieties was determined. In rats treated with Triton WR1339, the amount of newly synthesized fatty acid secreted as very-low-density lipoprotein (VLDL) triacylglycerol was greater during the dark phase of the diurnal cycle than during the light phase (11.3 versus 4.8 mumol of 3H2O/3 h per g of liver respectively). However, the total mass of VLDL triacylglycerol secreted remained constant, as did the amount of label in the secreted triacylglycerol glycerol. Newly synthesized fatty acids comprised only a small proportion of the total VLDL triacylglycerol fatty acids (TGFA) at both times (dark phase, 7.7%; light phase, 2.4%). Starvation for 24 h resulted in a small increase in the secretion of VLDL triacylglycerol. However, the contribution from newly synthesized fatty acids was decreased. Similar effects were observed in streptozotocin-diabetic animals. During the light and dark phases of the cycle, similar quantities of newly synthesized TGFA entered the hepatic cytosol, and these amounts were much smaller than those secreted as VLDL triacylglycerol. The mass of cytosolic triacylglycerol showed a diurnal variation, with a greater concentration during the light phase than in the dark. In diabetes, the mass of triacylglycerol was increased in the cytosol, as was the incorporation of labelled acylglycerol glycerol. Diabetes also abolished the diurnal variation in the quantity of cytosolic triacylglycerol. In each group of animals the specific radioactivity of the microsomal triacylglycerol was similar to that of the respective newly secreted plasma VLDL. The specific radioactivity of the cytosolic triacylglycerol was only 15.8% (dark phase) or 16.8% (light phase) that of the microsomal triacylglycerol. This increased to 35.5% in the starved animals and 40.2% in the diabetic animals.

1999 ◽  
Vol 276 (2) ◽  
pp. E241-E248 ◽  
Author(s):  
Kevin Evans ◽  
Mo L. Clark ◽  
Keith N. Frayn

We have studied the fate of lipoprotein lipase (LPL)-derived fatty acids by measuring arteriovenous differences across subcutaneous adipose tissue and skeletal muscle in vivo. Six subjects were fasted overnight and were then given 40 g of triacylglycerol either orally or as an intravenous infusion over 4 h. Intracellular lipolysis (hormone-sensitive lipase action; HSL) was suppressed after both oral and intravenous fat loads ( P < 0.001). Insulin, a major regulator of HSL activity, showed little change after either oral or intravenous fat load, suggesting that suppression of HSL action occurred independently of insulin. The rate of action of LPL (measured as triacylglycerol extraction) increased with both oral and intravenous fat loads in adipose tissue ( P = 0.002) and skeletal muscle ( P = 0.001). There was increased escape of LPL-derived fatty acids into the circulation from adipose tissue, shown by lack of reesterification of fatty acids. There was no release into the circulation of LPL-derived fatty acids from skeletal muscle. These results suggest that insulin is not essential for HSL suppression or increased triacylglycerol clearance but is important in reesterification of fatty acids in adipose tissue but not uptake by skeletal muscle, thus affecting fatty acid partitioning between adipose tissue and the circulation, postprandial nonesterified fatty acid concentrations, and hepatic very low density lipoprotein secretion.


1992 ◽  
Vol 283 (1) ◽  
pp. 145-149 ◽  
Author(s):  
A M B Moir ◽  
V A Zammit

1. We describe a method for the selective labelling of hepatic fatty acids in the rat in vivo. It relies on (i) the rapid and preferential uptake of cholesteryl ester from chylomicron and/or very-low-density-lipoprotein remnants by the liver [Holder, Zammit & Robinson (1990) Biochem. J. 272, 735-741] (without prior exchange of the ester to other lipoproteins in the plasma), and (ii) the very short half-life of the cholesteryl ester in the liver. The 14C-labelled fatty acid moiety generated by cholesteryl ester hydrolysis was shown to be utilized by the liver for glycerolipid synthesis in a very similar pattern to that demonstrated for exogenous fatty acids by isolated cultured hepatocytes in previous studies. 2. Starvation (24 h) was shown to decrease the proportion of fatty acid utilized for glycerolipid synthesis, but to result in a proportionately smaller effect on incorporation into phospholipid. This was accompanied by a decrease in the fraction of synthesized triacylglycerol that was secreted by the liver. 3. Streptozotocin-diabetes did not affect the phospholipid/triacylglycerol ratio, but resulted in a small, but significant, decline in the fraction of triacylglycerol secreted by the liver. 4. In both starved and diabetic animals fatty acid esterification to the glycerol moiety constituted a smaller proportion of the total disposal of label. 5. These findings appear to validate the present method for the selective labelling of liver fatty acids in vivo in a non-invasive manner. Other possible uses for the method are suggested.


1983 ◽  
Vol 101 (3) ◽  
pp. 763-765
Author(s):  
Barbara A. König ◽  
J. D. Oldham ◽  
D. S. Parker

Vascular injection or infusion of isotopically labelled fatty acids into both ruminant and nonruminant species has been used as a method for determining the entry rate of non-esterified fatty acids (NEFA) into blood (Bickerstaffe, Annison & Linzell, 1974; Vranic, 1975). Results obtained in this way represent the release of fatty acids from several sources, principally adipose tissue. The predominant labelled end-products from [3H]– and [14C]fatty acid metabolism are water and carbon dioxide respectively. Both these metabolites enter extensive body pools and the label is unlikely to be reincorporated into plasma NEFA during the time course of conventional short-term experiments (2–4 h). During isotope dilution experiments, however, some labelled fatty acid could be incorporated into adipose tissue triacyglycerol (TAG) following synthesis of low-density lipoprotein in the liver. In addition, the contribution of NEFA carbon to endogenous acetate production could result in transfer of 14C in any C, or 8H attached to the C8 position in acetate, from the infused fatty acid to fatty acids synthesized by liver and adipose tissue.


Author(s):  
T.V. Bogdan ◽  

Numerous studies have demonstrated the superiority of rosuvastatin over other statins in the treatment of cardiovascular disease. It has been proven that rosuvastatin is more effectively lowers low-density lipoprotein cholesterol in patients with cardiovascular disease than other members of this drug group. Despite the known mechanisms of action of statins on blood lipids, their effective use in patients with cardiovascular disease, as well as side effects, the influence of these drugs on the fatty acid spectrum of lymphocyte (LC) membrane phospholipids in patients with ischemic heart disease remains unexplored. The results of the studies cited in the article indicate that, in patients with unstable angina who received the therapy that included rosuvastatin, unlike patients receiving the basic treatment with atorvastatin, the relative phosphate lipid contents of palmitic, stearic, and stearin arachidonic polyunsaturated fatty acids and the amount of unsaturated fatty acids are normalized, which testifies to the stabilization of membranes as dynamic structures.


1990 ◽  
Vol 272 (3) ◽  
pp. 735-741 ◽  
Author(s):  
J C Holder ◽  
V A Zammit ◽  
D S Robinson

The removal from the blood and the uptake by the liver of injected very-low-density lipoprotein (VLDL) preparations that had been radiolabelled in their apoprotein and cholesteryl ester moieties was studied in lactating rats. Radiolabelled cholesteryl ester was removed from the blood and taken up by the liver more rapidly than sucrose-radiolabelled apoprotein. Near-maximum cholesteryl ester uptake by the liver occurred within 5 min of the injection of the VLDL. At this time, apoprotein B uptake by the liver was only about 25% of the maximum. Maximum uptake of the injected VLDL apoprotein B label was not achieved until at least 15 min after injection, by which time the total uptakes of cholesteryl ester and apoprotein B label were very similar. The results suggest that preferential uptake of the lipoprotein cholesteryl ester by the liver occurred before endocytosis of the entire lipoprotein complex. The fate of the injected VLDL cholesteryl ester after its uptake by the liver was also monitored. Radiolabel associated with the hepatic cholesteryl ester fraction fell steadily from its early maximum level, the rate of fall being faster and more extensive when the fatty acid, rather than the cholesterol, moiety of the ester was labelled. By 30 min after the injection of VLDL containing [3H]cholesteryl ester, over one-third of the injected label was already present as [3H]cholesterol in the liver. When VLDL containing cholesteryl [14C]oleate was injected, a substantial proportion (about 25%) of the injected radiolabelled fatty acid appeared in the hepatic triacylglycerol fraction within 60 min: very little was present in the plasma triacylglycerol fraction at this time.


1983 ◽  
Vol 245 (3) ◽  
pp. R386-R395
Author(s):  
N. Baker ◽  
H. J. Rostami ◽  
J. Elovson

We have attempted to predict the kinetic behavior of the complex very low-density lipoprotein (VLDL; d less than 1.006) fraction in blood plasma of rats in the steady state. Specifically we proposed a simple model with two different kinds of nascent VLDL particles derived from the liver, one containing apoprotein B (PI/II) [apoB(PI/II)], the high-molecular-weight apoB, and the other, apoprotein B (PIII) [apoB(PIII)], the low-molecular-weight apoB. Two other particles, the corresponding remnants derived from the nascent VLDL particles were also included. Then a number of feasible in vivo tracer experiments were considered in which VLDL labeled in the apoB and/or triglyceride (TG) moieties would be injected into recipient rats and the kinetic behavior of the various compartments predicted by simulation analysis. In addition the kinetic behavior of products such as free fatty acids formed during hydrolysis of labeled TG fatty acids and liver TG derived from labeled circulating remnants was considered. Both the relative sizes of nascent and remnant particles and the extent of average hydrolysis of nascent VLDL-TG (before formation of a remnant particle) were considered in our analysis. On the basis of these predictions we have suggested a number of experimental approaches that should be helpful in defining the relative pool sizes and the turnover rates of each kind of particle in vivo.


2002 ◽  
Vol 22 (23) ◽  
pp. 8204-8214 ◽  
Author(s):  
Linda E. Hammond ◽  
Patricia A. Gallagher ◽  
Shuli Wang ◽  
Sylvia Hiller ◽  
Kimberly D. Kluckman ◽  
...  

ABSTRACT Microsomal and mitochondrial isoforms of glycerol-3-phosphate acyltransferase (GPAT; E.C. 2.3.1.15) catalyze the committed step in glycerolipid synthesis. The mitochondrial isoform, mtGPAT, was believed to control the positioning of saturated fatty acids at the sn-1 position of phospholipids, and nutritional, hormonal, and overexpression studies suggested that mtGPAT activity is important for the synthesis of triacylglycerol. To determine whether these purported functions were true, we constructed mice deficient in mtGPAT. mtGPAT−/− mice weighed less than controls and had reduced gonadal fat pad weights and lower hepatic triacylglycerol content, plasma triacylglycerol, and very low density lipoprotein triacylglycerol secretion. As predicted, in mtGPAT−/− liver, the palmitate content was lower in triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine. Positional analysis revealed that mtGPAT−/− liver phosphatidylethanolamine and phosphatidylcholine had about 21% less palmitate in the sn-1 position and 36 and 40%, respectively, more arachidonate in the sn-2 position. These data confirm the important role of mtGPAT in the synthesis of triacylglycerol, in the fatty acid content of triacylglycerol and cholesterol esters, and in the positioning of specific fatty acids, particularly palmitate and arachidonate, in phospholipids. The increase in arachidonate may be functionally significant in terms of eicosanoid production.


1995 ◽  
Vol 308 (2) ◽  
pp. 537-542 ◽  
Author(s):  
A M B Moir ◽  
B S Park ◽  
V A Zammit

Polyunsaturated fatty acids (PUFA) have been suggested to exert their hypotriglyceridaemic effect through several possible mechanisms that would be expected to decrease the rate of hepatic very-low-density-lipoprotein-triacylglycerol secretion. We have quantified the role played in vivo by changes in the pattern of partitioning of (i) acyl-CoA between oxidation and esterification, (ii) diacylglycerol between synthesis of triacylglycerol and of the major phospholipids, and (iii) triacylglycerol between secretion and storage within the liver, in response to two dietary levels of n-6 and n-3 PUFA. In order to achieve this we used the technique of selective labelling of hepatic fatty acids in vivo. Compared with a predominantly saturated fatty acid diet, both n-6 and n-3 PUFA intake resulted in a decrease in the proportion of acyl moieties that were secreted by the liver, through an increased diversion of acyl-CoA towards oxidation and a lower fractional rate of secretion of newly synthesized triacylglycerol. In addition, a diet rich in n-3 fatty acids resulted not only in a greater magnitude of these effects but also in a doubling of the partitioning of diacylglycerol towards phospholipid labelling. It is shown that the overall 50% reduction achieved by fish oil feeding in the proportion of acyl groups that were secreted by the liver was distributed over all three branch points. The contribution of each of these adaptations was quantified. The application of such an approach, i.e. the localization and in vivo quantification of the importance of loci of control, in studies on dietary and pharmacological agents that affect lipaemia, is discussed.


2020 ◽  
Vol 21 (12) ◽  
pp. 4359
Author(s):  
Yen-Chung Lin ◽  
Jhih-Cheng Wang ◽  
Mai-Szu Wu ◽  
Yuh-Feng Lin ◽  
Chang-Rong Chen ◽  
...  

Dysregulation of fatty acid oxidation and accumulation of fatty acids can cause kidney injury. Nifedipine modulates lipogenesis-related transcriptional factor SREBP-1/2 in proximal tubular cells by inhibiting the Adenosine 5‘-monophosphate (AMP)-activated protein kinase (AMPK) pathway in vitro. However, the mechanisms by which nifedipine (NF) modulates lipotoxicity in vivo are unclear. Here, we examined the effect of NF in a doxorubicin (DR)-induced kidney injury rat model. Twenty-four Sprague–Dawley rats were divided into control, DR, DR+NF, and high-fat diet (HFD) groups. The DR, DR+NF, and HFD groups showed hypertension and proteinuria. Western blotting and immunohistochemical analysis showed that NF significantly induced TNF-α, CD36, SREBP-1/2, and acetyl-CoA carboxylase expression and renal fibrosis, and reduced fatty acid synthase and AMPK compared to other groups (p < 0.05). Additionally, 18 patients with chronic kidney disease (CKD) who received renal transplants were enrolled to examine their graft fibrosis and lipid contents via transient elastography. Low-density lipoprotein levels in patients with CKD strongly correlated with lipid contents and fibrosis in grafted kidneys (p < 0.05). Thus, NF may initiate lipogenesis through the SREBP-1/2/AMPK pathway and lipid uptake by CD36 upregulation and aggravate renal fibrosis in vivo. Higher low-density lipoprotein levels may correlate with renal fibrosis and lipid accumulation in grafted kidneys of patients with CKD.


Sign in / Sign up

Export Citation Format

Share Document