scholarly journals High-level expression of human dihydropteridine reductase (EC 1.6.99.7), without N-terminal amino acid protection, in Escherichia coli

1989 ◽  
Vol 261 (1) ◽  
pp. 265-268 ◽  
Author(s):  
W L F Armarego ◽  
R G H Cotton ◽  
H H Dahl ◽  
N E Dixon

The cDNA coding for human dihydropteridine reductase [Dahl, Hutchinson, McAdam, Wake, Morgan & Cotton (1987) Nucleic Acids Res. 15, 1921-1936] was inserted downstream of tandem bacteriophage lambda PR and PL promoters in Escherichia coli vector pCE30. Since pCE30 also expresses the lambda c1857ts gene, transcription may be controlled by variation of temperature. The recombinant plasmid in an E. coli K12 strain grown at 30 degrees C, then at 45 degrees C, directed the synthesis of dihydropteridine reductase to very high levels. The protein was soluble, at least as active as the authentic human enzyme, and lacked the N-terminal amino acid protection.

2001 ◽  
Vol 360 (3) ◽  
pp. 617-623 ◽  
Author(s):  
Qian HAN ◽  
Jianmin FANG ◽  
Jianyong LI

The present study describes the isolation of a protein from Escherichia coli possessing kynurenine aminotransferase (KAT) activity and its identification as aspartate aminotransferase (AspAT). KAT catalyses the transamination of kynurenine and 3-hydroxykynurenine to kynurenic acid and xanthurenic acid respectively, and the enzyme activity can be easily detected in E. coli cells. Separation of the E. coli protein possessing KAT activity through various chromatographic steps led to the isolation of the enzyme. N-terminal sequencing of the purified protein determined its first 10 N-terminal amino acid residues, which were identical with those of the E. coli AspAT. Recombinant AspAT (R-AspAT), homologously expressed in an E. coli/pET22b expression system, was capable of catalysing the transamination of both l-kynurenine (Km = 3mM; Vmax = 7.9μmol·min−1·mg−1) and 3-hydroxy-dl-kynurenine (Km = 3.7mM; Vmax = 1.25μmol·min−1·mg−1) in the presence of pyruvate as an amino acceptor, and exhibited its maximum activity at temperatures between 50–60°C and at a pH of approx. 7.0. Like mammalian KATs, R-AspAT also displayed high glutamine transaminase K activity when l-phenylalanine was used as an amino donor (Km = 8mM; Vmax = 20.6μmol·min−1·mg−1). The exact match of the first ten N-terminal amino acid residues of the KAT-active protein with that of AspAT, in conjunction with the high KAT activity of R-AspAT, provides convincing evidence that the identity of the E. coli protein is AspAT.


1992 ◽  
Vol 8 (2) ◽  
pp. 165-172 ◽  
Author(s):  
M. Yamamoto ◽  
T. Harigaya ◽  
T. Ichikawa ◽  
K. Hoshino ◽  
K. Nakashima

ABSTRACT Transformation of Escherichia coli cells with a recombinant plasmid containing modified mouse prolactin (mPRL) cDNA and a pKK223-3 vector resulted in efficient expression of mPRL protein. Cloned mPRL cDNA was modified by removing the 5′ non-translating sequence as well as the sequence which encoded the signal peptide of preprolactin for recombination. In addition, approximately 100 nucleotides of the 5′-terminal region of the cDNA, which include the ATG initiation codon and the following 31 codons of mature mPRL, were replaced by a chemically synthesized oligonucleotide duplex. The sequence of this duplex was chosen to be rich in AT without changing the amino acid sequence of the protein. The modified cDNA was finally inserted into the multicopy plasmid, pUC19, before high-level expression of mPRL in E. coli cells was obtained. Western blotting analysis of total protein from transformed E. coli cells showed that both 23 and 16kDa peptides were recognized by specific mPRL antisera. The purified and refolded 23 kDa protein exhibited a growth-stimulating effect on rat Nb 2 Node lymphoma cells, and was very similar to that of natural pituitary PRL.


2000 ◽  
Vol 182 (2) ◽  
pp. 469-476 ◽  
Author(s):  
Frank J. Ruzicka ◽  
Kafryn W. Lieder ◽  
Perry A. Frey

ABSTRACT Lysine 2,3-aminomutase (KAM, EC 5.4.3.2 .) catalyzes the interconversion of l-lysine and l-β-lysine, the first step in lysine degradation in Clostridium subterminale SB4. KAM requires S-adenosylmethionine (SAM), which mediates hydrogen transfer in a mechanism analogous to adenosylcobalamin-dependent reactions. KAM also contains an iron-sulfur cluster and requires pyridoxal 5′-phosphate (PLP) for activity. In the present work, we report the cloning and nucleotide sequencing of the gene kamA for C. subterminale SB4 KAM and conditions for its expression in Escherichia coli. The cyanogen bromide peptides were isolated and characterized by mass spectral analysis and, for selected peptides, amino acid and N-terminal amino acid sequence analysis. PCR was performed with degenerate oligonucleotide primers and C. subterminale SB4 chromosomal DNA to produce a portion of kamA containing 1,029 base pairs of the gene. The complete gene was obtained from a genomic library of C. subterminale SB4 chromosomal DNA by use of DNA probe analysis based on the 1,029-base pair fragment. The full-length gene consisted of 1,251 base pairs specifying a protein of 47,030 Da, in reasonable agreement with 47,173 Da obtained by electrospray mass spectrometry of the purified enzyme. N- and C-terminal amino acid analysis of KAM and its cyanogen bromide peptides firmly correlated its amino acid sequence with the nucleotide sequence of kamA. A survey of bacterial genome databases identified seven homologs with 31 to 72% sequence identity to KAM, none of which were known enzymes. An E. coli expression system consisting of pET 23a(+) plus kamA yielded unsatisfactory expression and bacterial growth. Codon usage in kamA includes the use of AGA for all 29 arginine residues. AGA is rarely used in E. coli, and arginine clusters at positions 4 and 5, 25 and 27, and 134, 135, and 136 apparently compound the barrier to expression. Coexpression of E. coli argU dramatically enhanced both cell growth and expression of KAM. Purified recombinant KAM is equivalent to that purified from C. subterminale SB4.


2021 ◽  
Vol 22 (3) ◽  
pp. 1018
Author(s):  
Hiroaki Yokota

Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.


1996 ◽  
Vol 10 (2) ◽  
pp. 187-194 ◽  
Author(s):  
D. Deutsch ◽  
E. Chityat ◽  
M. Hekmati ◽  
A. Palmon ◽  
Y. Farkash ◽  
...  

A human cDNA, encoding for the 175-aminoacid human amelogenin, was prepared by RT PCR from tooth bud mRNA and sub-cloned into pGEX-KG expression plasmid for over-expression in E. coli. The expressed protein was characterized by SDS-PAGE, Western blotting, and N-terminal amino acid sequencing.


1998 ◽  
Vol 64 (5) ◽  
pp. 1589-1593 ◽  
Author(s):  
Michael J. Weickert ◽  
Izydor Apostol

ABSTRACT Coexpression of di-α-globin and β-globin in Escherichia coli in the presence of exogenous heme yielded high levels of soluble, functional recombinant human hemoglobin (rHb1.1). High-level expression of rHb1.1 provides a good model for measuring mistranslation in heterologous proteins. rHb1.1 does not contain isoleucine; therefore, any isoleucine present could be attributed to mistranslation, most likely mistranslation of one or more of the 200 codons that differ from an isoleucine codon by 1 bp. Sensitive amino acid analysis of highly purified rHb1.1 typically revealed ≤0.2 mol of isoleucine per mol of hemoglobin. This corresponds to a translation error rate of ≤0.001, which is not different from typical translation error rates found for E. coli proteins. Two different expression systems that resulted in accumulation of globin proteins to levels equivalent to ∼20% of the level of E. colisoluble proteins also resulted in equivalent translational fidelity.


1984 ◽  
Vol 62 (6) ◽  
pp. 426-433 ◽  
Author(s):  
Alastair T. Matheson ◽  
Makoto Yaguchi ◽  
Patricia Christensen ◽  
C. Fernand Rollin ◽  
Sadiq Hasnain

Sixteen ribosomal proteins (r-proteins) from the 50S ribosomal subunit of the archaebacterium Halobacterium cutirubrum have been purified and their amino acid composition and partial N-terminal amino acid sequence have been determined. These proteins as a group are much more acidic than the large subunit r-proteins from eubacteria or eukaryotes. Little sequence homology is evident between the 50S subunit archaebacterial r-proteins and the equivalent proteins from the eubacterium Escherichia coli.


1999 ◽  
Vol 181 (2) ◽  
pp. 577-584 ◽  
Author(s):  
Wolfgang Ebel ◽  
Janine E. Trempy

ABSTRACT Capsule (cps) gene expression in Escherichia coli is controlled by a complex network of regulators. Transcription of the cps operon is controlled by at least two positive regulators, RcsA and RcsB. We show here that RcsA functions to activate its own expression, as seen by the 100-fold-increased expression of arcsA::lacZ transcriptional fusion in strains with high levels of RcsA protein, either due to a mutation inlon or due to overexpression of RcsA from a multicopy plasmid. Expression of the rcsA::lacZfusion is increased by but not dependent on the presence of RcsB. In addition, the effects of H-NS and RcsB on the expression ofrcsA are independent of each other. A sequence motif, conserved between the E. coli cps promoter and theErwinia amylovora ams promoter and previously shown to be the RcsA-RcsB binding site, was identified in the rcsApromoter region and shown to be required for high-level expression ofrcsA.


Sign in / Sign up

Export Citation Format

Share Document