scholarly journals Mutational analysis of the channel and loop sequences of human ferritin H-chain

1989 ◽  
Vol 264 (2) ◽  
pp. 381-388 ◽  
Author(s):  
S Levi ◽  
A Luzzago ◽  
F Franceschinelli ◽  
P Santambrogio ◽  
G Cesareni ◽  
...  

Human ferritin H-chain mutants were obtained by engineering the recombinant protein expressed by Escherichia coli. The mutagenesis were directed to the C-terminal sequence forming the hydrophobic channel, to the hydrophilic channel and to the loop sequence. The mutants were analysed for extent of expression, for stability, for capacity to incorporate iron and for kinetics of iron uptake and iron oxidation. Of the 22 mutants analysed only two with deletions of single residues in the loop sequence and one with deletion of the last 28 amino acid residues did not assemble into ferritin-like proteins. The other mutants assembled correctly and showed similar chemical/physical properties to the wild-type; they included duplication of an 18-amino acid-residue stretch, deletion of the last 22 and the last seven residues and various mutations of single amino acid residues. Two mutants with extensive alteration in the C-terminal sequence had a diminished thermostability associated with incapability to incorporate iron though they still catalysed iron oxidation. The mutants with alterations of the sequence around the hydrophilic channel showed diminished iron uptake and oxidation kinetics, together with a slightly larger apparent molecular size. The results indicate (i) that two of the sequences are important for ferritin assembly/stability, (ii) that the presence of the hydrophobic channel is essential for formation of the iron core and (iii) that the sites of iron interaction and the path of iron penetration into ferritin remain unidentified.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Susan M. Mitchell ◽  
Morven Graham ◽  
Xinran Liu ◽  
Ralf M. Leonhardt

AbstractThe pigment cell-specific protein PMEL forms a functional amyloid matrix in melanosomes onto which the pigment melanin is deposited. The amyloid core consists of a short proteolytic fragment, which we have termed the core-amyloid fragment (CAF) and perhaps additional parts of the protein, such as the PKD domain. A highly O-glycosylated repeat (RPT) domain also derived from PMEL proteolysis associates with the amyloid and is necessary to establish the sheet-like morphology of the assemblies. Excluded from the aggregate is the regulatory N-terminus, which nevertheless must be linked in cis to the CAF in order to drive amyloid formation. The domain is then likely cleaved away immediately before, during, or immediately after the incorporation of a new CAF subunit into the nascent amyloid. We had previously identified a 21 amino acid long region, which mediates the regulatory activity of the N-terminus towards the CAF. However, many mutations in the respective segment caused misfolding and/or blocked PMEL export from the endoplasmic reticulum, leaving their phenotype hard to interpret. Here, we employ a saturating mutagenesis approach targeting the motif at single amino acid resolution. Our results confirm the critical nature of the PMEL N-terminal region and identify several residues essential for PMEL amyloidogenesis.


1967 ◽  
Vol 34 (1) ◽  
pp. 85-88 ◽  
Author(s):  
M. H. Abd El-Salam ◽  
W. Manson

SummaryWhen κ-casein from buffalo's milk was treated with carboxypeptidase A (EC 3. 4. 2. 1),4 amino acids, valine, threonine, serine and alanine were released from the protein in a manner consistent with the view that they originate in the C-terminal sequence of a single peptide chain. The amounts produced suggest a minimum molecular weight for buffalo κ-casein of approximately 17000, in agreement with the value calculated from the phosphorous content on the basis of the presence of 2 phosphorus atoms/molecule. A comparison is made with the C-terminal sequence reported for bovine κ-casein.


1977 ◽  
Author(s):  
T. E. Petersen ◽  
G. Dudek-Wojciechowska ◽  
L. Sottrup-Jensen ◽  
S. Magnusson

Human antithrombin-III is a single-chain glycoprotein with three disulfide bridges and four prosthetic glucosamine-based oligosaccharide groups. The disulfide bridges have been established. In four fragments of 208, 168, 3 and 46 amino acid residues, resp. 415 of the appr. 425 residues have been sequenced. The four oligosaccharide groups are attached to four Asn-residues within a sequence region of 95 residues. No extensive sequence homology with the trypsin inhibitors has been observed. One chymotryptic peptide was found to be a substrate for bovine factor Xa, cleaving the arginyl bond in the sequence -Ile-Val-Ala-Glu-Gly-Arg-Asp-. A second peptide is cleaved by thrombin. It is not clear whether these sites are inhibitor sites in the native molecule. Other possible candidates for inhibitor sites are a -Val-Leu-Ile-Leu-Pro-Lys-Pro- sequence (similar to the sequence 40-48 of hirudin, which also includes a -Pro-Lys-Pro- sequence) and also the C-terminal sequence -Gly-Arg-Val-Ala-Asn-Pro-Cys-Val-Lys.


1992 ◽  
Vol 286 (3) ◽  
pp. 761-769 ◽  
Author(s):  
F P Barry ◽  
J U Gaw ◽  
C N Young ◽  
P J Neame

The hyaluronan-binding region (HABR) was prepared from pig laryngeal cartilage aggrecan and the amino acid sequence was determined. The HABR had two N-termini: one N-terminal sequence was Val-Glu-Val-Ser-Glu-Pro (367 amino acids in total), and a second N-terminal sequence (Ala-Ile-Ser-Val-Glu-Val; 370 amino acids in total) was found to arise due to alternate cleavage by the signal peptidase. The N-linked oligosaccharides were analysed by examining their reactivity with a series of lectins. It was found that the N-linked oligosaccharide on loop A was of the mannose type, while that on loop B was of the complex type. No reactivity was detected between the N-linked oligosaccharide on loop B' and any of the lectins. The location of keratan sulphate (KS) in the HABR was determined by Edman degradation of the immobilized KS-containing peptide. The released amino acid derivatives were collected and tested for the presence of epitope to antibody 5-D-4. On the basis of 5-D-4 reactivity and sequencing yields, the KS chains are attached to threonine residues 352 and 357. There is no KS at threonine-355. This site is not in fact in G1, but about 16 amino acid residues into the interglobular domain. Comparison of the structure of the KS chain from the HABR and from the KS domain of pig laryngeal cartilage aggrecan was made by separation on polyacrylamide gels of the oligosaccharides arising from digestion with keratanase. Comparison of the oligosaccharide maps suggests that the KS chains from both parts of the aggrecan molecule have the same structure.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 918-924 ◽  
Author(s):  
Eileen Collins Tozer ◽  
Elizabeth K. Baker ◽  
Mark H. Ginsberg ◽  
Joseph C. Loftus

Abstract An unbiased genetic approach was used to identify a specific amino acid residue in the IIb subunit important for the ligand binding function of the integrin IIbβ. Chemically mutagenized cells were selected by flow cytometry based on their inability to bind the ligand mimetic antibody PAC1 and a cell line containing a single amino acid substitution in IIb at position 224 (D→V) was identified. Although well expressed on the surface of transfected cells, IIbD224Vβ3 as well as IIbD224Aβ3 did not bind IIbβ3-specific ligands or a RGD peptide, a ligand shared in common with vβ3. Insertion of exon 5 of IIb, residues G193-W235, into the backbone of the v subunit did not enable the chimeric receptor to bind IIbβ3-specific ligands. However, the chimeric receptor was still capable of binding to a RGD affinity matrix. IIbD224 is not well conserved among other integrin  subunits and is located in a region of significant variability. In addition, amino acid D224 lies within a predicted loop of the recently proposed β-propeller model for integrin  subunits and is adjacent to a loop containing amino acid residues previously implicated in receptor function. These data support a role for this region in ligand binding function of the IIbβ3 receptor.


2002 ◽  
Vol 364 (1) ◽  
pp. 57-63 ◽  
Author(s):  
Fadi BOU-ABDALLAH ◽  
Georgia C. PAPAEFTHYMIOU ◽  
Danielle M. SCHESWOHL ◽  
Sean D. STANGA ◽  
Paolo AROSIO ◽  
...  

Biomineralization of the ferritin iron core involves a complex series of events in which H2O2 is produced during iron oxidation by O2 at a dinuclear centre, the ‘ferroxidase site’, located on the H-subunit of mammalian proteins. Rapid-freeze quench Mössbauer spectroscopy was used to probe the early events of iron oxidation and mineralization in recombinant human ferritin containing 24 H-subunits. The spectra reveal that a μ-1,2-peroxodiFe(III) intermediate (species P) with Mössbauer parameters δ (isomer shift) = 0.58mm/s and ΔEQ (quadrupole splitting) = 1.07mm/s at 4.2K is formed within 50ms of mixing Fe(II) with the apoprotein. This intermediate accounts for almost all of the iron in the sample at 160ms. It subsequently decays within 10s to form a μ-oxodiFe(III)—protein complex (species D), which partially vacates the ferroxidase sites of the protein to generate Fe(III) clusters (species C) at a reaction time of 10min. The intermediate peroxodiFe(III) complex does not decay under O2-limiting conditions, an observation suggesting inhibition of decay by unreacted Fe(II), or a possible role for O2 in ferritin biomineralization in addition to that of direct oxidation of iron(II).


2002 ◽  
Vol 76 (23) ◽  
pp. 11801-11808 ◽  
Author(s):  
Jiafen Hu ◽  
Nancy M. Cladel ◽  
Martin D. Pickel ◽  
Neil D. Christensen

ABSTRACT Previous studies have identified two different strains of cottontail rabbit papillomavirus (CRPV) that differ by approximately 5% in base pair sequence and that perform quite differently when used to challenge New Zealand White (NZW) rabbit skin. One strain caused persistent lesions (progressor strain), and the other induced papillomas that spontaneously regressed (regressor strain) at high frequencies (J. Salmon, M. Nonnenmacher, S. Caze, P. Flamant, O. Croissant, G. Orth, and F. Breitburd, J. Virol. 74:10766-10777, 2000; J. Salmon, N. Ramoz, P. Cassonnet, G. Orth, and F. Breitburd, Virology 235:228-234, 1997). We generated a panel of CRPV genomes that contained chimeric and mutant progressor and regressor strain E6 genes and assessed the outcome upon infection of both outbred and EIII/JC inbred NZW rabbits. The carboxy-terminal 77-amino-acid region of the regressor CRPV strain E6, which contained 15 amino acid residues that are different from those of the equivalent region of the persistent CRPV strain E6, played a dominant role in the conversion of the persistent CRPV strain to one showing high rates of spontaneous regressions. In addition, a single amino acid change (G252E) in the E6 protein of the CRPV progressor strain led to high frequencies of spontaneous regressions in inbred rabbits. These observations imply that small changes in the amino acid sequences of papillomavirus proteins can dramatically impact the outcome of natural host immune responses to these viral infections. The data imply that intrastrain differences between separate isolates of a single papillomavirus type (such as human papillomavirus type 16) may contribute to a collective variability in host immune responses in outbred human populations.


2008 ◽  
Vol 7 (10) ◽  
pp. 1865-1873 ◽  
Author(s):  
Kenneth G. A. van Driel ◽  
Arend F. van Peer ◽  
Jan Grijpstra ◽  
Han A. B. Wösten ◽  
Arie J. Verkleij ◽  
...  

ABSTRACT The hyphae of filamentous fungi are compartmentalized by septa that have a central pore. The fungal septa and septum-associated structures play an important role in maintaining cellular and intrahyphal homeostasis. The dolipore septa in the higher Basidiomycota (i.e., Agaricomycotina) are associated with septal pore caps. Although the ultrastructure of the septal pore caps has been studied extensively, neither the biochemical composition nor the function of these organelles is known. Here, we report the identification of the glycoprotein SPC18 that was found in the septal pore cap-enriched fraction of the basidiomycetous fungus Rhizoctonia solani. Based on its N-terminal sequence, the SPC18 gene was isolated. SPC18 encodes a protein of 158 amino acid residues, which contains a hydrophobic signal peptide for targeting to the endoplasmic reticulum and has an N-glycosylation motif. Immunolocalization showed that SPC18 is present in the septal pore caps. Surprisingly, we also observed SPC18 being localized in some plugs. The data reported here strongly support the hypothesis that septal pore caps are derived from endoplasmic reticulum and are involved in dolipore plugging and, thus, contribute to hyphal homeostasis in basidiomycetous fungi.


Sign in / Sign up

Export Citation Format

Share Document