scholarly journals Septal Pore Cap Protein SPC18, Isolated from the Basidiomycetous Fungus Rhizoctonia solani, Also Resides in Pore Plugs

2008 ◽  
Vol 7 (10) ◽  
pp. 1865-1873 ◽  
Author(s):  
Kenneth G. A. van Driel ◽  
Arend F. van Peer ◽  
Jan Grijpstra ◽  
Han A. B. Wösten ◽  
Arie J. Verkleij ◽  
...  

ABSTRACT The hyphae of filamentous fungi are compartmentalized by septa that have a central pore. The fungal septa and septum-associated structures play an important role in maintaining cellular and intrahyphal homeostasis. The dolipore septa in the higher Basidiomycota (i.e., Agaricomycotina) are associated with septal pore caps. Although the ultrastructure of the septal pore caps has been studied extensively, neither the biochemical composition nor the function of these organelles is known. Here, we report the identification of the glycoprotein SPC18 that was found in the septal pore cap-enriched fraction of the basidiomycetous fungus Rhizoctonia solani. Based on its N-terminal sequence, the SPC18 gene was isolated. SPC18 encodes a protein of 158 amino acid residues, which contains a hydrophobic signal peptide for targeting to the endoplasmic reticulum and has an N-glycosylation motif. Immunolocalization showed that SPC18 is present in the septal pore caps. Surprisingly, we also observed SPC18 being localized in some plugs. The data reported here strongly support the hypothesis that septal pore caps are derived from endoplasmic reticulum and are involved in dolipore plugging and, thus, contribute to hyphal homeostasis in basidiomycetous fungi.

1998 ◽  
Vol 79 (02) ◽  
pp. 306-309 ◽  
Author(s):  
Dougald Monroe ◽  
Julie Oliver ◽  
Darla Liles ◽  
Harold Roberts ◽  
Jen-Yea Chang

SummaryTissue factor pathway inhibitor (TFPI) acts to regulate the initiation of coagulation by first inhibiting factor Xa. The complex of factor Xa/ TFPI then inhibits the factor VIIa/tissue factor complex. The cDNA sequences of TFPI from several different species have been previously reported. A high level of similarity is present among TFPIs at the molecular level (DNA and protein sequences) as well as in biochemical function (inhibition of factor Xa, VIIa/tissue factor). In this report, we used a PCR-based screening method to clone cDNA for full length TFPI from a mouse macrophage cDNA library. Both cDNA and predicted protein sequences show significant homology to the other reported TFPI sequences, especially to that of rat. Mouse TFPI has a signal peptide of 28 amino acid residues followed by the mature protein (in which the signal peptide is removed) which has 278 amino acid residues. Mouse TFPI, like that of other species, consists of three tandem Kunitz type domains. Recombinant mouse TFPI was expressed in the human kidney cell line 293 and purified for functional assays. When using human clotting factors to investigate the inhibition spectrum of mouse TFPI, it was shown that, in addition to human factor Xa, mouse TFPI inhibits human factors VIIa, IXa, as well as factor XIa. Cloning and expression of the mouse TFPI gene will offer useful information and material for coagulation studies performed in a mouse model system.


1967 ◽  
Vol 34 (1) ◽  
pp. 85-88 ◽  
Author(s):  
M. H. Abd El-Salam ◽  
W. Manson

SummaryWhen κ-casein from buffalo's milk was treated with carboxypeptidase A (EC 3. 4. 2. 1),4 amino acids, valine, threonine, serine and alanine were released from the protein in a manner consistent with the view that they originate in the C-terminal sequence of a single peptide chain. The amounts produced suggest a minimum molecular weight for buffalo κ-casein of approximately 17000, in agreement with the value calculated from the phosphorous content on the basis of the presence of 2 phosphorus atoms/molecule. A comparison is made with the C-terminal sequence reported for bovine κ-casein.


1977 ◽  
Author(s):  
T. E. Petersen ◽  
G. Dudek-Wojciechowska ◽  
L. Sottrup-Jensen ◽  
S. Magnusson

Human antithrombin-III is a single-chain glycoprotein with three disulfide bridges and four prosthetic glucosamine-based oligosaccharide groups. The disulfide bridges have been established. In four fragments of 208, 168, 3 and 46 amino acid residues, resp. 415 of the appr. 425 residues have been sequenced. The four oligosaccharide groups are attached to four Asn-residues within a sequence region of 95 residues. No extensive sequence homology with the trypsin inhibitors has been observed. One chymotryptic peptide was found to be a substrate for bovine factor Xa, cleaving the arginyl bond in the sequence -Ile-Val-Ala-Glu-Gly-Arg-Asp-. A second peptide is cleaved by thrombin. It is not clear whether these sites are inhibitor sites in the native molecule. Other possible candidates for inhibitor sites are a -Val-Leu-Ile-Leu-Pro-Lys-Pro- sequence (similar to the sequence 40-48 of hirudin, which also includes a -Pro-Lys-Pro- sequence) and also the C-terminal sequence -Gly-Arg-Val-Ala-Asn-Pro-Cys-Val-Lys.


1992 ◽  
Vol 286 (3) ◽  
pp. 761-769 ◽  
Author(s):  
F P Barry ◽  
J U Gaw ◽  
C N Young ◽  
P J Neame

The hyaluronan-binding region (HABR) was prepared from pig laryngeal cartilage aggrecan and the amino acid sequence was determined. The HABR had two N-termini: one N-terminal sequence was Val-Glu-Val-Ser-Glu-Pro (367 amino acids in total), and a second N-terminal sequence (Ala-Ile-Ser-Val-Glu-Val; 370 amino acids in total) was found to arise due to alternate cleavage by the signal peptidase. The N-linked oligosaccharides were analysed by examining their reactivity with a series of lectins. It was found that the N-linked oligosaccharide on loop A was of the mannose type, while that on loop B was of the complex type. No reactivity was detected between the N-linked oligosaccharide on loop B' and any of the lectins. The location of keratan sulphate (KS) in the HABR was determined by Edman degradation of the immobilized KS-containing peptide. The released amino acid derivatives were collected and tested for the presence of epitope to antibody 5-D-4. On the basis of 5-D-4 reactivity and sequencing yields, the KS chains are attached to threonine residues 352 and 357. There is no KS at threonine-355. This site is not in fact in G1, but about 16 amino acid residues into the interglobular domain. Comparison of the structure of the KS chain from the HABR and from the KS domain of pig laryngeal cartilage aggrecan was made by separation on polyacrylamide gels of the oligosaccharides arising from digestion with keratanase. Comparison of the oligosaccharide maps suggests that the KS chains from both parts of the aggrecan molecule have the same structure.


1999 ◽  
Vol 181 (17) ◽  
pp. 5288-5295 ◽  
Author(s):  
Irina Kataeva ◽  
Xin-Liang Li ◽  
Huizhong Chen ◽  
Sang-Ki Choi ◽  
Lars G. Ljungdahl

ABSTRACT The cellulolytic and hemicellulolytic complex of Clostridium thermocellum, termed cellulosome, consists of up to 26 polypeptides, of which at least 17 have been sequenced. They include 12 cellulases, 3 xylanases, 1 lichenase, and CipA, a scaffolding polypeptide. We report here a new cellulase gene, celK, coding for CelK, a 98-kDa major component of the cellulosome. The gene has an open reading frame (ORF) of 2,685 nucleotides coding for a polypeptide of 895 amino acid residues with a calculated mass of 100,552 Da. A signal peptide of 27 amino acid residues is cut off during secretion, resulting in a mature enzyme of 97,572 Da. The nucleotide sequence is highly similar to that of cbhA(V. V. Zverlov et al., J. Bacteriol. 180:3091–3099, 1998), having an ORF of 3,690 bp coding for the 1,230-amino-acid-residue CbhA of the same bacterium. Homologous regions of the two genes are 86.5 and 84.3% identical without deletion or insertion on the nucleotide and amino acid levels, respectively. Both have domain structures consisting of a signal peptide, a family IV cellulose binding domain (CBD), a family 9 glycosyl hydrolase domain, and a dockerin domain. A striking distinction between the two polypeptides is that there is a 330-amino-acid insertion in CbhA between the catalytic domain and the dockerin domain containing a fibronectin type 3-like domain and family III CBD. This insertion, missing in CelK, is responsible for the size difference between CelK and CbhA. Upstream and downstream flanking sequences of the two genes show no homology. The data indicate thatcelK and cbhA in the genome of C. thermocellum have evolved through gene duplication and recombination of domain coding sequences. celK without a dockerin domain was expressed in Escherichia coli and purified. The enzyme had pH and temperature optima at 6.0 and 65°C, respectively. It hydrolyzedp-nitrophenyl-β-d-cellobioside with aKm and a V max of 1.67 μM and 15.1 U/mg, respectively. Cellobiose was a strong inhibitor of CelK activity, with a Ki of 0.29 mM. The enzyme was thermostable, after 200 h of incubation at 60°C, 97% of the original activity remained. Properties of the enzyme indicated that it is a cellobiohydrolase.


1982 ◽  
Vol 47 (2) ◽  
pp. 709-718 ◽  
Author(s):  
Miroslav Baudyš ◽  
Vladimír Kostka ◽  
Karel Grüner ◽  
Jan Pohl

S-sulfonated chicken pepsinogen was digested with TPCK-trypsin; large tryptic peptides, separated on Sephadex G-25 fine, were subjected to additional cleavage with α-chymotrypsin. The hold-up fraction of the chymotryptic digest from the Sephadex G-25 column, was resolved by high voltage electrophoresis. The three most acidic zones contained glycopeptides of identical amino acid sequence Val-Ser-Thr-Asn-Glu-Thr-Val-Tyr, yet differed in the composition of the sugar moiety. These glycopeptides, moreover, bear different numbers of sulfate groups which enabled the resolution of the peptides. The most acidic glycopeptide contains 7 glucosamine residues, 3 mannose residues and 5 sulfate groups, the second one 6 glucosamine residues, 3 mannose residues and 4 sulfate groups and the slowest, minority glycopeptide, 5 glucosamine residues, 2 mannose residues and 2 sulfate groups. The entire sugar moiety is attached to one of the chain viaasparagine. In other experiments the glycopeptides were also isolated from the thermolytic digest of chicken pepsin; their C-terminal sequence was shorter by two amino acid residues. The tentative assignment of the glycopeptides to the amino acid sequence of pepsinogen resulted from the analysis of the limited tryptic digest of the whole protein molecule. Chicken pepsinogen is glycosylated at the site of the chain occupied by a phosphoserine residue in hog pepsinogen A.


1990 ◽  
Vol 268 (2) ◽  
pp. 401-407 ◽  
Author(s):  
A Carabaza ◽  
J Arino ◽  
J W Fox ◽  
C Villar-Palasi ◽  
J J Guinovart

Glycogen synthase from Saccharomyces cerevisiae was purified to homogeneity. The enzyme showed a subunit molecular mass of 80 kDa. The holoenzyme appears to be a tetramer. Antibodies developed against purified yeast glycogen synthase inactivated the enzyme in yeast extracts and allowed the detection of the protein in Western blots. Amino acid analysis showed that the enzyme is very rich in glutamate and/or glutamine residues. The N-terminal sequence (11 amino acid residues) was determined. In addition, selected tryptic-digest peptides were purified by reverse-phase h.p.l.c. and submitted to gas-phase sequencing. Up to eight sequences (79 amino acid residues) could be aligned with the human muscle enzyme sequence. Levels of identity range between 37 and 100%, indicating that, although human and yeast glycogen synthases probably share some conserved regions, significant differences in their primary structure should be expected.


1989 ◽  
Vol 9 (11) ◽  
pp. 4977-4985
Author(s):  
D S Allison ◽  
E T Young

The effects of five single-amino-acid substitution mutations within the signal sequence of yeast prepro-alpha-factor were tested in yeast cells. After short pulse-labelings, virtually all of the alpha-factor precursor proteins from a wild-type gene were glycosylated and processed by signal peptidase. In contrast, the signal sequence mutations resulted in the accumulation of mostly unglycosylated prepro-alpha-factor after a short labeling interval, indicating a defect in translocation of the protein into the endoplasmic reticulum. Confirming this interpretation, unglycosylated mutant prepro-alpha-factor in cell extracts was sensitive to proteinase K and therefore in a cytosolic location. The signal sequence mutations reduced the rate of translocation into the endoplasmic reticulum by as much as 25-fold or more. In at least one case, mutant prepro-alpha-factor molecules were translocated almost entirely posttranslationally. Four of the five mutations also reduced the rate of proteolytic processing by signal peptidase in vivo, even though the signal peptide alterations are not located near the cleavage site. This study demonstrates that a single-amino-acid substitution mutation within a eucaryotic signal peptide can affect both translocation and proteolytic processing in vivo and may indicate that the recognition sequences for translocation and processing overlap within the signal peptide.


Sign in / Sign up

Export Citation Format

Share Document