scholarly journals Evidence for an essential serine residue in the active site of the Theta class glutathione transferases

1995 ◽  
Vol 311 (1) ◽  
pp. 247-250 ◽  
Author(s):  
P G Board ◽  
M Coggan ◽  
M C J Wilce ◽  
M W Parker

A consistent feature of the Alpha-, Mu- and Pi-class glutathione transferases (GSTs) is the presence near the N-terminus of a tyrosine residue that contributes to the activation of glutathione. While this residue appears to be conserved in many Theta-class GSTs, its absence in some suggested that the Theta-class GSTs may have a significantly different structure or catalytic mechanism. The elucidation of the crystal structure of the Theta-class GST from the Australian sheep blowfly, Lucilia cuprina, has indicated that a serine residue rather than a tyrosine residue can form a hydrogen bond with the glutathionyl sulphur atom. The present studies show that mutation of Ser-9 to alanine substantially inactivates the L. cuprina GST, confirming its importance in the reaction mechanism. As this serine is conserved in all Theta-class enzymes reported so far, it seems that an active-site serine is a significant factor that distinguishes the Theta-class GSTs from members of the Alpha-, Mu- and Pi-class isoenzymes.

2014 ◽  
Vol 70 (4) ◽  
pp. 1166-1172 ◽  
Author(s):  
Michael E. Webb ◽  
Briony A. Yorke ◽  
Tom Kershaw ◽  
Sarah Lovelock ◽  
Carina M. C. Lobley ◽  
...  

Aspartate α-decarboxylase is a pyruvoyl-dependent decarboxylase required for the production of β-alanine in the bacterial pantothenate (vitamin B5) biosynthesis pathway. The pyruvoyl group is formedviathe intramolecular rearrangement of a serine residue to generate a backbone ester intermediate which is cleaved to generate an N-terminal pyruvoyl group. Site-directed mutagenesis of residues adjacent to the active site, including Tyr22, Thr57 and Tyr58, reveals that only mutation of Thr57 leads to changes in the degree of post-translational activation. The crystal structure of the site-directed mutant T57V is consistent with a non-rearranged backbone, supporting the hypothesis that Thr57 is required for the formation of the ester intermediate in activation.


Biochemistry ◽  
2002 ◽  
Vol 41 (52) ◽  
pp. 15468-15476 ◽  
Author(s):  
Suzanne H. Edwards ◽  
Darren Thompson ◽  
Sharon F. Baker ◽  
Stephen P. Wood ◽  
David C. Wilton

Author(s):  
Wanchun Han ◽  
Jiahui Cheng ◽  
Congli Zhou ◽  
Yuejin Hua ◽  
Ye Zhao

2′,3′-Cyclic phosphodiesterase (CPDase) homologues have been found in all domains of life and are involved in diverse RNA and nucleotide metabolisms. The CPDase fromDeinococcus radioduranswas crystallized and the crystals diffracted to 1.6 Å resolution, which is the highest resolution currently known for a CPDase structure. Structural comparisons revealed that the enzyme is in an open conformation in the absence of substrate. Nevertheless, the active site is well formed, and the representative motifs interact with sulfate ion, which suggests a conserved catalytic mechanism.


2021 ◽  
Author(s):  
Vikram Kumar ◽  
Nagesh Srikaku ◽  
Veeranarayanan Surya Aathmanathan ◽  
Padikara K Satheeshkumar ◽  
Madanan Gopalakrishnan Madathiparambil ◽  
...  

Abstract Collagenase is a virulence factor which facilitates the invasion of pathogenic Leptospira into the host. In the present study, the model of Leptopsiral collagenase was constructed by employing threading method with the crystal structure of collagenase G. Three ligand binding sites at N- terminus, catalytic site and C-terminus were predicted by Metapocket server. Among sixty seven inhibitors from the ChEBI and Zinc databases, Protohypericin is predicted as the best inhibitor since it binds at the catalytic site of Leptopsiral collagenase. Molecular dynamic simulation studies validated the stability of interaction between the active site of Leptospiral collagenase and Protohypericin. The docking and molecular simulation studies corroborated the potential of the ligand to curb leptospiral infection.


2016 ◽  
Vol 113 (35) ◽  
pp. 9804-9809 ◽  
Author(s):  
Patricia R. Feliciano ◽  
Catherine L. Drennan ◽  
M. Cristina Nonato

Fumarate hydratases (FHs) are essential metabolic enzymes grouped into two classes. Here, we present the crystal structure of a class I FH, the cytosolic FH from Leishmania major, which reveals a previously undiscovered protein fold that coordinates a catalytically essential [4Fe-4S] cluster. Our 2.05 Å resolution data further reveal a dimeric architecture for this FH that resembles a heart, with each lobe comprised of two domains that are arranged around the active site. Besides the active site, where the substrate S-malate is bound bidentate to the unique iron of the [4Fe-4S] cluster, other binding pockets are found near the dimeric enzyme interface, some of which are occupied by malonate, shown here to be a weak inhibitor of this enzyme. Taken together, these data provide a framework both for investigations of the class I FH catalytic mechanism and for drug design aimed at fighting neglected tropical diseases.


2001 ◽  
Vol 356 (2) ◽  
pp. 327-334 ◽  
Author(s):  
Fernando RODRIGUES-LIMA ◽  
Claudine DELOMÉNIE ◽  
Geoffrey H. GOODFELLOW ◽  
Denis M. GRANT ◽  
Jean-Marie DUPRET

Arylamine N-acetyltransferases (EC 2.3.1.5) (NATs) catalyse the biotransformation of many primary arylamines, hydrazines and their N-hydroxylated metabolites, thereby playing an important role in both the detoxification and metabolic activation of numerous xenobiotics. The recently published crystal structure of the Salmonella typhimurium NAT (StNAT) revealed the existence of a cysteine protease-like (Cys-His-Asp) catalytic triad. In the present study, a three-dimensional homology model of human NAT1, based upon the crystal structure of StNAT [Sinclair, Sandy, Delgoda, Sim and Noble (2000) Nat. Struct. Biol. 7, 560–564], is demonstrated. Alignment of StNAT and NAT1, together with secondary structure predictions, have defined a consensus region (residues 29–131) in which 37% of the residues are conserved. Homology modelling provided a good quality model of the corresponding region in human NAT1. The location of the catalytic triad was found to be identical in StNAT and NAT1. Comparison of active-site structural elements revealed that a similar length loop is conserved in both species (residues 122–131 in NAT1 model and residues 122–133 in StNAT). This observation may explain the involvement of residues 125, 127 and 129 in human NAT substrate selectivity. Our model, and the fact that cysteine protease inhibitors do not affect the activity of NAT1, suggests that human NATs may have adapted a common catalytic mechanism from cysteine proteases to accommodate it for acetyl-transfer reactions.


2007 ◽  
Vol 81 (7) ◽  
pp. 3583-3596 ◽  
Author(s):  
Laura L. Marcotte ◽  
Amanda B. Wass ◽  
David W. Gohara ◽  
Harsh B. Pathak ◽  
Jamie J. Arnold ◽  
...  

ABSTRACT Poliovirus 3CD is a multifunctional protein that serves as a precursor to the protease 3Cpro and the viral polymerase 3Dpol and also plays a role in the control of viral replication. Although 3CD is a fully functional protease, it lacks polymerase activity. We have solved the crystal structures of 3CD at a 3.4-Å resolution and the G64S fidelity mutant of 3Dpol at a 3.0-Å resolution. In the 3CD structure, the 3C and 3D domains are joined by a poorly ordered polypeptide linker, possibly to facilitate its cleavage, in an arrangement that precludes intramolecular proteolysis. The polymerase active site is intact in both the 3CD and the 3Dpol G64S structures, despite the disruption of a network proposed to position key residues in the active site. Therefore, changes in molecular flexibility may be responsible for the differences in fidelity and polymerase activities. Extensive packing contacts between symmetry-related 3CD molecules and the approach of the 3C domain's N terminus to the VPg binding site suggest how 3Dpol makes biologically relevant interactions with the 3C, 3CD, and 3BCD proteins that control the uridylylation of VPg during the initiation of viral replication. Indeed, mutations designed to disrupt these interfaces have pronounced effects on the uridylylation reaction in vitro.


2005 ◽  
Vol 280 (16) ◽  
pp. 15800-15808 ◽  
Author(s):  
Ante Tocilj ◽  
Joseph D. Schrag ◽  
Yunge Li ◽  
Barbara L. Schneider ◽  
Larry Reitzer ◽  
...  

The ammonia-producing arginine succinyltransferase pathway is the major pathway inEscherichia coliand related bacteria for arginine catabolism as a sole nitrogen source. This pathway consists of five steps, each catalyzed by a distinct enzyme. Here we report the crystal structure ofN-succinylarginine dihydrolase AstB, the second enzyme of the arginine succinyltransferase pathway, providing the first structural insight into enzymes from this pathway. The enzyme exhibits a pseudo 5-fold symmetric α/β propeller fold of circularly arranged ββαβ modules enclosing the active site. The crystal structure indicates clearly that this enzyme belongs to the amidinotransferase (AT) superfamily and that the active site contains a Cys–His-Glu triad characteristic of the AT superfamily. Structures of the complexes of AstB with the reaction product and a C365S mutant with bound theN-succinylarginine substrate suggest a catalytic mechanism that consists of two cycles of hydrolysis and ammonia release, with each cycle utilizing a mechanism similar to that proposed for arginine deiminases. Like other members of the AT superfamily of enzymes, AstB possesses a flexible loop that is disordered in the absence of substrate and assumes an ordered conformation upon substrate binding, shielding the ligand from the bulk solvent, thereby controlling substrate access and product release.


2005 ◽  
Vol 79 (1) ◽  
pp. 277-288 ◽  
Author(s):  
Todd C. Appleby ◽  
Hartmut Luecke ◽  
Jae Hoon Shim ◽  
Jim Z. Wu ◽  
I. Wayne Cheney ◽  
...  

ABSTRACT Picornaviruses utilize virally encoded RNA polymerase and a uridylylated protein primer to ensure replication of the entire viral genome. The molecular details of this mechanism are not well understood due to the lack of structural information. We report the crystal structure of human rhinovirus 16 3D RNA-dependent RNA polymerase (HRV16 3Dpol) at a 2.4-Å resolution, representing the first complete polymerase structure from the Picornaviridae family. HRV16 3Dpol shares the canonical features of other known polymerase structures and contains an N-terminal region that tethers the fingers and thumb subdomains, forming a completely encircled active site cavity which is accessible through a small tunnel on the backside of the molecule. The small thumb subdomain contributes to the formation of a large cleft on the front face of the polymerase which also leads to the active site. The cleft appears large enough to accommodate a template:primer duplex during RNA elongation or a protein primer during the uridylylation stage of replication initiation. Based on the structural features of HRV16 3Dpo1 and the catalytic mechanism known for all polymerases, a front-loading model for uridylylation is proposed.


2013 ◽  
Vol 69 (10) ◽  
pp. 2008-2016 ◽  
Author(s):  
Przemyslaw Nogly ◽  
Pedro M. Matias ◽  
Matteo de Rosa ◽  
Rute Castro ◽  
Helena Santos ◽  
...  

The first structure of a bacterial α-phosphoglucomutase with an overall fold similar to eukaryotic phosphomannomutases is reported. Unlike most α-phosphoglucomutases within the α-D-phosphohexomutase superfamily, it belongs to subclass IIb of the haloacid dehalogenase superfamily (HADSF). It catalyzes the reversible conversion of α-glucose 1-phosphate to glucose 6-phosphate. The crystal structure of α-phosphoglucomutase fromLactococcus lactis(APGM) was determined at 1.5 Å resolution and contains a sulfate and a glycerol bound at the enzyme active site that partially mimic the substrate. A dimeric form of APGM is present in the crystal and in solution, an arrangement that may be functionally relevant. The catalytic mechanism of APGM and its strict specificity towards α-glucose 1-phosphate are discussed.


Sign in / Sign up

Export Citation Format

Share Document