scholarly journals Human rhinovirus 2A proteinase mutant and its second-site revertants

1996 ◽  
Vol 318 (1) ◽  
pp. 213-218 ◽  
Author(s):  
Marion LUDERER-GMACH ◽  
Hans-Dieter LIEBIG ◽  
Wolfgang SOMMERGRUBER ◽  
Tilman VOSS ◽  
Frederike FESSL ◽  
...  

The 2A proteinases of human rhinoviruses are cysteine proteinases with marked similarities to serine proteinases. In the absence of a three-dimensional structure, we developed a genetical screening system for proteolytic activity and identified Phe-130 as a key residue. The mutation Phe-130 → Tyr almost completely inhibited enzyme activity at 37 °C; activity was, however, partially restored by the following exchanges: Ser-27 → Pro, His-135 → Arg or His-137 → Arg. To investigate this phenotypic reversion, 2A proteinases with the mutations Phe-130 → Tyr, Phe-130 → Tyr/His-135 → Arg, Phe-130 → Tyr/His-137 → Arg, His-135 → Arg or His-137 → Arg were expressed in Escherichia coli and purified. None of these mutations affected the affinity of the enzyme for a peptide substrate. However, the temperature-dependence of enzyme activity, as assayed by cleavage of a peptide substrate and by monitoring the toxicity of the proteinases towards the E. coli strain BL21(DE3), and the structural stability, as monitored by 8-anilino-1-naphthalenesulphonic acid fluorescence and CD spectrometry, were affected. The thermal transition temperatures for both the activity and the stability of the Phe-130 → Tyr 2A proteinase were reduced by about 17 °C compared with the wild-type enzyme. The presence of the additional mutations His-135 → Arg or His-137 → Arg in the Phe-130 → Tyr mutant increased temperature stability by 3 °C and 6 °C respectively. Thus essential interactions exist within the C-terminal domain of human rhinoviral 2A proteinases which contribute to the overall stability and integrity of the enzyme.

Author(s):  
M. Boublik ◽  
N. Robakis ◽  
J.S. Wall

The three-dimensional structure and function of biological supramolecular complexes are, in general, determined and stabilized by conformation and interactions of their macromolecular components. In the case of ribosomes, it has been suggested that one of the functions of ribosomal RNAs is to act as a scaffold maintaining the shape of the ribosomal subunits. In order to investigate this question, we have conducted a comparative TEM and STEM study of the structure of the small 30S subunit of E. coli and its 16S RNA.The conventional electron microscopic imaging of nucleic acids is performed by spreading them in the presence of protein or detergent; the particles are contrasted by electron dense solution (uranyl acetate) or by shadowing with metal (tungsten). By using the STEM on freeze-dried specimens we have avoided the shearing forces of the spreading, and minimized both the collapse of rRNA due to air drying and the loss of resolution due to staining or shadowing. Figure 1, is a conventional (TEM) electron micrograph of 30S E. coli subunits contrasted with uranyl acetate.


2014 ◽  
Vol 10 (4) ◽  
Author(s):  
Ruben Acuña ◽  
Zoé Lacroix ◽  
Nikolaos Papandreou ◽  
Jacques Chomilier

AbstractThe transition state ensemble during the folding process of globular proteins occurs when a sufficient number of intrachain contacts are formed, mainly, but not exclusively, due to hydrophobic interactions. These contacts are related to the folding nucleus, and they contribute to the stability of the native structure, although they may disappear after the energetic barrier of transition states has been passed. A number of structure and sequence analyses, as well as protein engineering studies, have shown that the signature of the folding nucleus is surprisingly present in the native three-dimensional structure, in the form of closed loops, and also in the early folding events. These findings support the idea that the residues of the folding nucleus become buried in the very first folding events, therefore helping the formation of closed loops that act as anchor structures, speed up the process, and overcome the Levinthal paradox. We present here a review of an algorithm intended to simulate in a discrete space the early steps of the folding process. It is based on a Monte Carlo simulation where perturbations, or moves, are randomly applied to residues within a sequence. In contrast with many technically similar approaches, this model does not intend to fold the protein but to calculate the number of non-covalent neighbors of each residue, during the early steps of the folding process. Amino acids along the sequence are categorized as most interacting residues (MIRs) or least interacting residues. The MIR method can be applied under a variety of circumstances. In the cases tested thus far, MIR has successfully identified the exact residue whose mutation causes a switch in conformation. This follows with the idea that MIR identifies residues that are important in the folding process. Most MIR positions correspond to hydrophobic residues; correspondingly, MIRs have zero or very low accessible surface area. Alongside the review of the MIR method, we present a new postprocessing method called smoothed MIR (SMIR), which refines the original MIR method by exploiting the knowledge of residue hydrophobicity. We review known results and present new ones, focusing on the ability of MIR to predict structural changes, secondary structure, and the improved precision with the SMIR method.


2010 ◽  
Vol 78 (11) ◽  
pp. 4882-4894 ◽  
Author(s):  
Praveen Alamuri ◽  
Martin Löwer ◽  
Jan A. Hiss ◽  
Stephanie D. Himpsl ◽  
Gisbert Schneider ◽  
...  

ABSTRACT Fimbriae of the human uropathogen Proteus mirabilis are the only characterized surface proteins that contribute to its virulence by mediating adhesion and invasion of the uroepithelia. PMI2122 (AipA) and PMI2575 (TaaP) are annotated in the genome of strain HI4320 as trimeric autotransporters with “adhesin-like” and “agglutinating adhesin-like” properties, respectively. The C-terminal 62 amino acids (aa) in AipA and 76 aa in TaaP are homologous to the translocator domains of YadA from Yersinia enterocolitica and Hia from Haemophilus influenzae. Comparative protein modeling using the Hia three-dimensional structure as a template predicted that each of these domains would contain four antiparallel beta sheets and that they formed homotrimers. Recombinant AipA and TaaP were seen as ∼28 kDa and ∼78 kDa, respectively, in Escherichia coli, and each also formed high-molecular-weight homotrimers, thus supporting this model. E. coli synthesizing AipA or TaaP bound to extracellular matrix proteins with a 10- to 60-fold-higher level of affinity than the control strain. Inactivation of aipA in P. mirabilis strains significantly (P < 0.01) reduced the mutants' ability to adhere to or invade HEK293 cell monolayers, and the functions were restored upon complementation. A 51-aa-long invasin region in the AipA passenger domain was required for this function. E. coli expressing TaaP mediated autoagglutination, and a taaP mutant of P. mirabilis showed significantly (P < 0.05) more reduced aggregation than HI4320. Gly-247 in AipA and Gly-708 in TaaP were indispensable for trimerization and activity. AipA and TaaP individually offered advantages to P. mirabilis in a murine model. This is the first report characterizing trimeric autotransporters in P. mirabilis as afimbrial surface adhesins and autoagglutinins.


1997 ◽  
Vol 327 (3) ◽  
pp. 847-851 ◽  
Author(s):  
Zengji LI ◽  
Yue SUN ◽  
L. David THURLOW

Twenty-one RNA minihelices, resembling the coaxially stacked acceptor- /T-stems and T-loop found along the top of a tRNA's three-dimensional structure, were synthesized and used as substrates for ATP/CTP:tRNA nucleotidyltransferases from Escherichia coli and Saccharomyces cerevisiae. The sequence of nucleotides in the loop varied at positions corresponding to residues 56, 57 and 58 in the T-loop of a tRNA. All minihelices were substrates for both enzymes, and the identity of bases in the loop affected the interaction. In general, RNAs with purines in the loop were better substrates than those with pyrimidines, although no single base identity absolutely determined the effectiveness of the RNA as substrate. RNAs lacking bases near the 5ʹ-end were good substrates for the E. coli enzyme, but were poor substrates for that from yeast. The apparent Km values for selected minihelices were 2-3 times that for natural tRNA, and values for apparent Vmax were lowered 5-10-fold.


1972 ◽  
Vol 130 (1) ◽  
pp. 55-62 ◽  
Author(s):  
J. Melling ◽  
G. K. Scott

Purified penicillinase, in gram quantities, has been prepared from Escherichia coli strain W3310 by using methods developed to handle large amounts of material. The final product had a specific enzyme activity of 3.08 units/μg of protein, which was over twice as high as that reported previously (Datta & Richmond, 1966). The purified enzyme was similar to that from E. coli strain TEM, but different in molecular weight and some other respects. The differences observed may be a result of the greater purity obtained.


Nature ◽  
1994 ◽  
Vol 369 (6483) ◽  
pp. 761-766 ◽  
Author(s):  
R. H. Jacobson ◽  
X.-J. Zhang ◽  
R. F. DuBose ◽  
B. W. Matthews

Nature ◽  
1994 ◽  
Vol 367 (6459) ◽  
pp. 138-146 ◽  
Author(s):  
Christopher D. Lima ◽  
James C. Wang ◽  
Alfonso Mondragón

2021 ◽  
Vol 33 (6) ◽  
pp. 1433-1438
Author(s):  
R. Verma ◽  
N. Singh ◽  
P. Chaudhuri (Chattopadhyay)

The native three-dimensional structure of protein is quite unstable under critical destabilizing conditions. In order to enhance the stability and activity for a proper folded environment of a protein, many stabilizing materials are added such as nanoparticles and osmolytes to an unfolded state of protein. Osmolytes are the important group of molecules which are engaged by the cell as an adaption in the severe conditions. In this communication, a comparative in vivo study is reported for imparting the status of stability and folding ability of zebrafish dihydrofolate reductase (zDHFR) protein with gold nanoparticles and various osmolytes (glycerol, glucose and betain). Present observations revealed that the interaction of gold nanoparticles (AuNPs) with bacteria at the cellular level helps in maintaining the stability of protein more effectively than osmolytes which could be used for many biological and pharmacological approaches although glycerol as an osmolyte also stabilizes the protein at a significant level.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jia Lei ◽  
Yong Zhang ◽  
Xuechen Ni ◽  
Xuejing Yu ◽  
Xingguo Wang

Abstract Background Herbaspirillum camelliae is a gram-negative endophyte isolated from the tea plant. Both strains WT00C and WT00F were found to hydrolyze epigallocatechin-3-gallate (EGCG) and epicatechin-3-gallate (ECG) to release gallic acid (GA) and display tannase activity. However, no tannase gene was annotated in the genome of H. camelliae WT00C. Results The 39 kDa protein, annotated as the prolyl oligopeptidase in the NCBI database, was finally identified as a novel tannase. Its gene was cloned, and the enzyme was expressed in E. coli and purified to homogeneity. Moreover, enzymatic characterizations of this novel tannase named TanHcw were studied. TanHcw was a secretary enzyme with a Sec/SPI signal peptide of 48 amino acids at the N-terminus, and it catalyzed the degradation of tannin, methyl gallate (MG), epigallocatechin-3-gallate (EGCG) and epicatechin-3-gallate (ECG). The optimal temperature and pH of TanHcw activities were 30 °C, pH 6.0 for MG and 40 °C, pH 7.0 for both EGCG and ECG. Na+, K+ Mn2+ and Triton-X100, Tween80 increased the enzyme activity of TanHcw, whereas Zn2+, Mg2+, Hg2+, EMSO, EDTA and β-mercaptoethanol inhibited enzyme activity. Km, kcat and kcat /Km of TanHcw were 0.30 mM, 37.84 s−1, 130.67 mM−1 s−1 for EGCG, 0.33 mM, 34.59 s−1, 105.01 mM−1 s−1 for ECG and 0.82 mM, 14.64 s−1, 18.17 mM−1 s−1 for MG, respectively. Conclusion A novel tannase TanHcw from H. camelliae has been identified and characterized. The biological properties of TanHcw suggest that it plays a crucial role in the specific colonization of H. camelliae in tea plants. Discovery of the tannase TanHcw in this study gives us a reasonable explanation for the host specificity of H. camelliae. In addition, studying the characteristics of this enzyme offers the possibility of further defining its potential in industrial application.


2021 ◽  
Vol 11 ◽  
Author(s):  
Shudong Wang ◽  
Dayan Liu ◽  
Mao Ding ◽  
Zhenzhen Du ◽  
Yue Zhong ◽  
...  

Deep learning methods, which can predict the binding affinity of a drug–target protein interaction, reduce the time and cost of drug discovery. In this study, we propose a novel deep convolutional neural network called SE-OnionNet, with two squeeze-and-excitation (SE) modules, to computationally predict the binding affinity of a protein–ligand complex. The OnionNet is used to extract a feature map from the three-dimensional structure of a protein–drug molecular complex. The SE module is added to the second and third convolutional layers to improve the non-linear expression of the network to improve model performance. Three different optimizers, stochastic gradient descent (SGD), Adam, and Adagrad, were also used to improve the performance of the model. A majority of protein–molecule complexes were used for training, and the comparative assessment of scoring functions (CASF-2016) was used as the benchmark. Experimental results show that our model performs better than OnionNet, Pafnucy, and AutoDock Vina. Finally, we chose the macrophage migration inhibitor factor (PDB ID: 6cbg) to test the stability and robustness of the model. We found that the prediction results were not affected by the docking position, and thus, our model is of acceptable robustness.


Sign in / Sign up

Export Citation Format

Share Document