scholarly journals Degradation of epigallocatechin and epicatechin gallates by a novel tannase TanHcw from Herbaspirillum camelliae

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jia Lei ◽  
Yong Zhang ◽  
Xuechen Ni ◽  
Xuejing Yu ◽  
Xingguo Wang

Abstract Background Herbaspirillum camelliae is a gram-negative endophyte isolated from the tea plant. Both strains WT00C and WT00F were found to hydrolyze epigallocatechin-3-gallate (EGCG) and epicatechin-3-gallate (ECG) to release gallic acid (GA) and display tannase activity. However, no tannase gene was annotated in the genome of H. camelliae WT00C. Results The 39 kDa protein, annotated as the prolyl oligopeptidase in the NCBI database, was finally identified as a novel tannase. Its gene was cloned, and the enzyme was expressed in E. coli and purified to homogeneity. Moreover, enzymatic characterizations of this novel tannase named TanHcw were studied. TanHcw was a secretary enzyme with a Sec/SPI signal peptide of 48 amino acids at the N-terminus, and it catalyzed the degradation of tannin, methyl gallate (MG), epigallocatechin-3-gallate (EGCG) and epicatechin-3-gallate (ECG). The optimal temperature and pH of TanHcw activities were 30 °C, pH 6.0 for MG and 40 °C, pH 7.0 for both EGCG and ECG. Na+, K+ Mn2+ and Triton-X100, Tween80 increased the enzyme activity of TanHcw, whereas Zn2+, Mg2+, Hg2+, EMSO, EDTA and β-mercaptoethanol inhibited enzyme activity. Km, kcat and kcat /Km of TanHcw were 0.30 mM, 37.84 s−1, 130.67 mM−1 s−1 for EGCG, 0.33 mM, 34.59 s−1, 105.01 mM−1 s−1 for ECG and 0.82 mM, 14.64 s−1, 18.17 mM−1 s−1 for MG, respectively. Conclusion A novel tannase TanHcw from H. camelliae has been identified and characterized. The biological properties of TanHcw suggest that it plays a crucial role in the specific colonization of H. camelliae in tea plants. Discovery of the tannase TanHcw in this study gives us a reasonable explanation for the host specificity of H. camelliae. In addition, studying the characteristics of this enzyme offers the possibility of further defining its potential in industrial application.

2007 ◽  
Vol 54 (1) ◽  
pp. 167-174 ◽  
Author(s):  
Małgorzata Cytryńska ◽  
Agnieszka Zdybicka-Barabas ◽  
Teresa Jakubowicz

The role of protein kinase A (PKA) in the humoral immune response of the greater wax moth Galleria mellonella larvae to live gram-positive bacteria Micrococcus lysodeikticus and gram-negative bacteria Escherichia coli was investigated. The immune challenge of larvae with both kinds of bacteria caused an increase in fat body PKA activity depending on the injected bacteria. Gram-positive M. lysodeikticus was a much better inducer of the enzyme activity than gram-negative E. coli. The PKA activity was increased about 2.5-fold and 1.5-fold, after M. lysodeikticus and E. coli injection, respectively. The in vivo inhibition of the enzyme activity by a cell permeable selective PKA inhibitor, Rp-8-Br-cAMPS, was correlated with considerable changes of fat body lysozyme content and hemolymph antimicrobial activity in bacteria-challenged insects. The kinetics of changes were different and dependent on the bacteria used for the immune challenge of G. mellonella larvae.


2006 ◽  
Vol 396 (1) ◽  
pp. 127-138 ◽  
Author(s):  
Takahiro Tanji ◽  
Ayako Ohashi-Kobayashi ◽  
Shunji Natori

A galactose-specific C-type lectin has been purified from a pupal extract of Drosophila melanogaster. This lectin gene, named DL1 (Drosophilalectin 1), is part of a gene cluster with the other two galactose-specific C-type lectin genes, named DL2 (Drosophilalectin 2) and DL3 (Drosophilalectin 3). These three genes are expressed differentially in fruit fly, but show similar haemagglutinating activities. The present study characterized the biochemical and biological properties of the DL1 protein. The recombinant DL1 protein bound to Escherichia coli and Erwinia chrysanthemi, but not to other Gram-negative or any other kinds of microbial strains that have been investigated. In addition, DL1 agglutinated E. coli and markedly intensified the association of a Drosophila haemocytes-derived cell line with E. coli. For in vivo genetic analysis of the lectin genes, we also established a null-mutant Drosophila. The induction of inducible antibacterial peptide genes was not impaired in the DL1 mutant, suggesting that the galactose-specific C-type lectin does not participate in the induction of antibacterial peptides, but possibly participates in the immune response via the haemocyte-mediated mechanism.


Author(s):  
А.V. Mastilenko ◽  
◽  
А.N. Minaeva ◽  
А.А. Lomakin ◽  
◽  
...  

The article is concerned with the study of main biological properties of bacteria B. trematum species. In this work the research results of their tinctorial, cultural and biochemical properties are shown, with the view to grounding for setup scheme of isolation and bacteriological test of stated microorganism. According to obtained data bacteria of the given species represents gram-negative, coccoid bacillus that are able to grow both on usual and differentially diagnostic mediums. Bacteria B. trematum grow in temperature range of 17-420С, optimal temperature of cultivation is 37˚С. It should be noticed that the most relevant medium for cultivation is bordetellagar It was established that bacteria grow on the sodium chloride mediums in the range of 3-5%. It was found that studied culture of bacteria B. trematum shows проявляет asugarlytic properties, has positive reaction on catalase, negative reaction on cytochrome oxidase and DNAse. Also during the research it was established that bacteria B. trematum doesn’t utilize urea and citrate, has weak proteolytic activity and doesn’t utilize a number of amino acids. Similar results were obtained when using the set Api 20 E and NEFERMtest 24. Additionally it was established that B. trematum doesn’t reconstruct nitrates to nitrites, doesn’t enzyme β-galactosidase, adrinin hydrolase, triptophane dyaminaze, lysine decarboxylase, ornithine decarboxylase and urea doesn’t utilize citrates, doesn’t produce H2S, indole and acetone, doesn’t oxidate sucrose, melibios, amigdalin . Research results represented in the article provide the basis of isolation scheme and identification of bacteria of given species.


Author(s):  
Jeddah Marie Vasquez ◽  
Ayesha Idrees ◽  
Irene Carmagnola ◽  
Aa Sigen ◽  
Sean McMahon ◽  
...  

The rapidly increasing resistance of bacteria to currently approved antibiotic drugs makes surgical interventions and the treatment of bacterial infections increasingly difficult. In recent years, complementary strategies to classical antibiotic therapy have, therefore, gained importance. One of these strategies is the use of medicinal honey in the treatment of bacterially colonized wounds. One of the several bactericidal effects of honey is based on the in situ generation of hydrogen peroxide through the activity of the enzyme glucose oxidase. The strategy underlying this work is to mimic this antibacterial redox effect of honey in an injectable, biocompatible, and rapidly forming hydrogel. The hydrogel was obtained by thiol–ene click reaction between hyperbranched polyethylene glycol diacrylate (HB PEGDA), synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization, and thiolated hyaluronic acid (HA-SH). After mixing 500 µL HB PEGDA (10%, w/w) and 500 µL HA-SH (1%, w/w) solutions, hydrogels formed in ∼60 s (HB PEGDA/HA-SH 10.0–1.0), as assessed by the tube inverting test. The HB PEGDA/HA-SH 10.0–1.0 hydrogel (200 µL) was resistant to in vitro dissolution in water for at least 64 days, absorbing up to 130 wt% of water. Varying glucose oxidase (GO) amounts (0–500 U/L) and constant glucose content (2.5 wt%) were loaded into HB PEGDA and HA-SH solutions, respectively, before hydrogel formation. Then, the release of H2O2 was evaluated through a colorimetric pertitanic acid assay. The GO content of 250 U/L was selected, allowing the formation of 10.8 ± 1.4 mmol H2O2/L hydrogel in 24 h, under static conditions. The cytocompatibility of HB PEGDA/HA-SH 10.0–1.0 hydrogels loaded with different GO activities (≤ 500 U/L) at a constant glucose amount (2.5 wt%) was investigated by in vitro assays at 24 h with L929 and HaCaT cell lines, according to DIN EN ISO 10993-5. The tests showed cytocompatibility for GO enzyme activity up to 250 U/L for both cell lines. The antibacterial activity of HB PEGDA/HA-SH 10.0–1.0 hydrogels loaded with increasing amounts of GO was demonstrated against various gram-positive bacteria (S. aureus and S. epidermidis), antibiotic-resistant gram-positive bacteria (MRSA and MRSE), gram-negative bacteria (P. aeruginosa, E. coli, and A. baumanii), and antibiotic-resistant gram-negative strains (P. aeruginosa and E. coli) using agar diffusion tests. For all gram-positive bacterial strains, increasing efficacy was measured with increasing GO activity. For the two P. aeruginosa strains, efficacy was shown only from an enzyme activity of 125 U/L and for E. coli and A. baumanii, efficacy was shown only from 250 U/L enzyme activity. HB PEGDA/HA-SH 10.0–1.0 hydrogels loaded with ≤250 U/L GO and 2.5 wt% glucose are promising formulations due to their fast-forming properties, cytocompatibility, and ability to produce antibacterial H2O2, warranting future investigations for bacterial infection treatment, such as wound care.


1996 ◽  
Vol 318 (1) ◽  
pp. 213-218 ◽  
Author(s):  
Marion LUDERER-GMACH ◽  
Hans-Dieter LIEBIG ◽  
Wolfgang SOMMERGRUBER ◽  
Tilman VOSS ◽  
Frederike FESSL ◽  
...  

The 2A proteinases of human rhinoviruses are cysteine proteinases with marked similarities to serine proteinases. In the absence of a three-dimensional structure, we developed a genetical screening system for proteolytic activity and identified Phe-130 as a key residue. The mutation Phe-130 → Tyr almost completely inhibited enzyme activity at 37 °C; activity was, however, partially restored by the following exchanges: Ser-27 → Pro, His-135 → Arg or His-137 → Arg. To investigate this phenotypic reversion, 2A proteinases with the mutations Phe-130 → Tyr, Phe-130 → Tyr/His-135 → Arg, Phe-130 → Tyr/His-137 → Arg, His-135 → Arg or His-137 → Arg were expressed in Escherichia coli and purified. None of these mutations affected the affinity of the enzyme for a peptide substrate. However, the temperature-dependence of enzyme activity, as assayed by cleavage of a peptide substrate and by monitoring the toxicity of the proteinases towards the E. coli strain BL21(DE3), and the structural stability, as monitored by 8-anilino-1-naphthalenesulphonic acid fluorescence and CD spectrometry, were affected. The thermal transition temperatures for both the activity and the stability of the Phe-130 → Tyr 2A proteinase were reduced by about 17 °C compared with the wild-type enzyme. The presence of the additional mutations His-135 → Arg or His-137 → Arg in the Phe-130 → Tyr mutant increased temperature stability by 3 °C and 6 °C respectively. Thus essential interactions exist within the C-terminal domain of human rhinoviral 2A proteinases which contribute to the overall stability and integrity of the enzyme.


Author(s):  
Singh Gurvinder ◽  
Singh Prabhsimran ◽  
Dhawan R. K.

In order to develop new antimicrobial agents, a series of 3-formyl indole based Schiff bases were synthesized by reacting 3-formyl indole(indole-3-carboxaldehyde) with substituted aniline taking ethanol as solvent. The reaction was carried in the presence of small amount of p-toluene sulphonic acid as catalyst.All the synthesized compounds were characterized by IR, 1H-NMR spectral analysis. All the synthesized compounds were evaluated for antimicrobial activity against two gram positive bacterial strains (B. subtilisand S. aureus) and two gram negative bacterial strains (P. aeruginosaand E. coli) and one fungal strain (C. albicans). All the synthesized compounds were found to have moderate to good antimicrobial activity. The  standard drug amoxicillin, fluconazole were used for antimicrobial activity. Among the synthesized compounds, the maximum antimicrobial activity was shown by compounds GS04, GS07, GS08 and GS10.


2019 ◽  
Vol 10 ◽  
pp. 1864-1872
Author(s):  
Prof. Teodora P. Popova

The effect of ionized aqueous solutions (anolytes and catholyte) in the processing of fruits (cherries, morellos, and strawberries) for decontamination has been tested. Freshly prepared analytes and catholyte without the addition of salts were used, as well as stored for 7 months anolytes, prepared with 0.5% NaCl and a combination of 0.5% NaCl and 0.5% Na2CO3. The anolyte prepared with a combination of 0.5% NaCl and 0.5% Na2CO3, as well as the anolyte obtained with 0.5% NaCl, exhibit high antimicrobial activity against the surface microflora of strawberries, cherries, and sour cherries. They inactivate E. coli for 15 minutes. The other species of the fam. Enterobacteriaceae were also affected to the maximum extent, as is the total number of microorganisms, especially in cherries and sour cherries. Even stored for 7 months, they largely retain their antimicrobial properties. Anolyte and catholyte, obtained without the addition of salts, showed a lower effect on the total number of microorganisms, but had a significant effect on Gram-negative bacteria, and especially with regard to the sanitary indicative E. coli.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-14
Author(s):  
Carine M.N. Ngaffo ◽  
Simplice B. Tankeo ◽  
Michel-Gael F. Guefack ◽  
Brice E. N. Wamba ◽  
Paul Nayim ◽  
...  

Abstract Background: Bacterial infections involving the multidrug resistant (MDR) strains are among the top leading causes of death throughout the world. Healthcare system across the globe has been suffering from an extra-ordinary burden in terms of looking for the new and more potent antimicrobial compounds. The aim of the present study was to determine the antibacterial activity of some Cameroonian edible plants (Garcinia lucida bark, Phoenix dactylifera pericarps, Theobroma cacao pod, Solanum macrocarpon leaves and Termitomyces titanicus whole plant) and their antibiotics-potentiation effects against some MDR Gram-negative bacteria phenotypes expressing efflux pumps (Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa and Providencia stuartii strains). Methods: The antibacterial activities of plant extract alone and in combination with usual antibiotics were carried out using the micro-dilution method. The effects of the most active plant extract (Garcinia lucida bark) on H+-ATPase-mediated proton pumps and on bacterial growth kinetic were performed using experimental protocols, while qualitative reference methods were used to highligh the major groups of secondary metabolites present in the extracts. Results: Qualitative phytochemical screening of plant extracts indicated that all analysed secondary metabolites were present in Theobroma cacao and Termitomyces titanicus while one (saponins) of them was absent in Garcinia lucida and Solanum macrocarpon. Only three of them (polyphenols, flavonoids and saponins) were detected in Phoenix dactylifera. Antibacterial essays showed that G. lucida was the most active plant as it inhibited the growth of all studied bacteria with strong activity (MIC<100 µg/mL) against E. coli ATCC8739, significant activity (100≤MIC≤512 µg/mL) against 80% of bacteria and moderate activity (512<MIC≤2048 µg/mL) against E. coli AG100A and E. aerogenes (EA289 and CM64). It was followed by T. cacao and S. macrocarpon extracts which exhibited an antibacterial potential against 95% and 80% of bacterial strains, respectively. These three extracts exhibited a bactericidal effect on a few bacteria. Extracts from T. titanicus and P. dactylifera were less active as they moderately (512<MIC≤2048 µg/mL) inhibited the growth of 35% and 10% of bacteria. All extracts selectively potentiated the activities of all antibiotics with improvement activity factors (IAF) ranging from 2 to 256. G. lucida, T. cacao and S. macrocarpon potentiated the activities of 100%, 89% and 67% of antibiotics respectively against more than 70%, suggesting that they contain bioactive compounds which could be considered as efflux pumps inhibitors. Whereas T. titanicus and P. dactylifera improved the activities of almost 40% and 20% of antibiotics, respectively. This increase of activities also characterizes synergistic effects between antibiotics and these bioactive compounds. G. lucida extract at all tested concentrations, strongly inhibited the growth of bacterial strain E. coli ATCC8739 and exhibited an inhibitory effect on this bacterial H+-ATPase-mediated proton pumps increasing the pH of the medium. Conclusion: The overall results indicated that food plants among which G. lucida, T. cacao and S. macrocarpon could have a benefit interest in combatting resistant types of bacteria. Keywords: Food plants; infectious diseases; MDR bacteria; efflux pumps; antibiotics; secondary metabolites.


2020 ◽  
Vol 27 (6) ◽  
pp. 551-556
Author(s):  
Nidhya N. Joghee ◽  
Gurunathan Jayaraman ◽  
Masilamani Selladurai

Background: Nε-acetyl L-α lysine is an unusual acetylated di-amino acid synthesized and accumulated by certain halophiles under osmotic stress. Osmolytes are generally known to protect proteins and other cellular components under various stress conditions. Objective: The structural and functional stability imparted by Nε-acetyl L-lysine on proteins were unknown and hence was studied and compared to other commonly known bacterial osmolytes - ectoine, proline, glycine betaine, trehalose and sucrose. Methods: Effects of osmolytes on the temperature and pH profiles, pH stability and thermodynamic stability of the model enzyme, α-amylase were analyzed. Results: At physiological pH, all the osmolytes under study increased the optimal temperature for enzyme activity and improved the thermodynamic stability of the enzyme. At acidic conditions (pH 3.0), Nε-acetyl L-α lysine and ectoine improved both the catalytic and thermodynamic stability of the enzyme; it was reflected in the increase in residual enzyme activity after incubation of the enzyme at pH 3.0 for 15 min by 60% and 63.5% and the midpoint temperature of unfolding transition by 11°C and 10°C respectively. Conclusion: Such significant protective effects on both activity and stability of α-amylase imparted by addition of Nε-acetyl L-α lysine and ectoine at acidic conditions make these osmolytes interesting candidates for biotechnological applications.


2020 ◽  
Vol 16 (4) ◽  
pp. 481-488
Author(s):  
Heli Sanghvi ◽  
Satyendra Mishra

Background: Curcumin, one of the most important pharmacologically significant natural products, has gained significant consideration among scientists for decades since its multipharmacological activities. 1, 3-Dicarbonyl moiety of curcumin was found to be accountable for the rapid degradation of curcumin molecule. The aim of present work is to replace 1, 3-dicarbonyl moiety of curcumin by pyrazole and phenylpyrazole derivatives with a view to improving its stability and to investigate the role of substitution in N-phenylpyrazole curcumin on its antibacterial activity against both Gram-positive as well as Gram-negative bacteria. Methods: Pyrazole derivatives of curcumin were prepared by heating curcumin with phenyhydrazine/ substituted phenyhydrazine derivatives in AcOH. The residue was purified by silica gel column chromatography. Structures of purified compounds were confirmed by 1H NMR and Mass spectroscopy. The synthesized compounds were evaluated for their antibacterial activity by the microdilution broth susceptibility test method against gram positive (S. aureus) and gram negative (E. coli). Results: Effects of substitution in N-phenylpyrazole curcumin derivatives against S. aureus and E. coli were studied. The most active N-(3-Nitrophenylpyrazole) curcumin (12) exhibits twenty-fold more potency against S. aureus (MIC: 10μg/mL)) and N-(2-Fluoroophenylpyrazole) curcumin (5) fivefold more potency against E. coli (MIC; 50 μg/mL) than N-phenylpyrazole curcumin (4). Whereas, a remarkable decline in anti-bacterial activity against S. aureus and E. coli was observed when electron donating groups were incorporated in N-phenylpyrazole curcumin (4). Comparative studies of synthesized compounds suggest the effects of electron withdrawing and electron donating groups on unsubstituted phenylpyrazole curcumin (4). Conclusion: The structure-activity relationship (SAR) results indicated that the electron withdrawing and electron donating at N-phenylpyrazole curcumin played key roles for their bacterial inhibitory effects. The results of the antibacterial evaluation showed that the synthesized pyrazole derivatives of curcumin displayed moderate to very high activity in S. aureus. In conclusion, the series of novel curcumin derivatives were designed, synthesized and tested for their antibacterial activities against S. aureus and E. coli. Among them, N-(3-Nitrophenylpyrazole curcumin; 12) was most active against S. aureus (Gram-positive) and N-(2-Fluoroophenylpyrazole) curcumin (5) against E. coli (Gram-negative) bacteria.


Sign in / Sign up

Export Citation Format

Share Document