scholarly journals Biochemical isolation of a membrane microdomain from resting platelets highly enriched in the plasma membrane glycoprotein CD36

1996 ◽  
Vol 319 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Douglas J DORAHY ◽  
Lisa F LINCZ ◽  
Clifford J MELDRUM ◽  
Gordon F BURNS

Here we describe the isolation and characterization of a Triton X-100-insoluble fraction isolated from lysates of platelets by flotation in sucrose gradients. Transmission electron microscopy of the insoluble material revealed a heterogeneous population of vesicles ranging in size from 20 to 1000 nm, and Western blot analyses of platelet lysates for the caveolae structural coat protein, caveolin/VIP21, were negative. Biochemical characterization of the Triton X-100-insoluble fraction showed it to be cholesterol-rich, greatly and specifically enriched in the plasma membrane glycoprotein CD36, and also to contain Src and the Src-related kinase, Lyn. CD36 within this fraction is shown to be palmitoylated, but the fraction itself is not generally enriched in palmitoylated platelet proteins. These results suggest that this fraction represents caveolin-negative, CD36-rich microdomains in the resting platelet membrane. CD36 can form associations with certain Src-related kinases and can signal to activate platelets. These results suggest the possibility that such microdomains are implicated in platelet activation.

1984 ◽  
Vol 219 (1) ◽  
pp. 309-316 ◽  
Author(s):  
R J Owens ◽  
M J Crumpton

A 68 000-Mr protein is a major component of a Nonidet P-40-insoluble fraction of lymphocyte plasma membrane prepared from human B lymphoblastoid cells (BRI 8) and pig mesenteric lymph nodes. The association of the protein with the detergent-insoluble complex depends on free Ca2+ concentrations of greater than 10 microM. The human and pig 68 000-Mr proteins were purified and appear to be homologous on the basis of amino acid composition and peptide mapping. The protein is monomeric, has pI 5.8 and a single high-affinity Ca2+-binding site (KD 1.2 microM). The results are discussed in terms of the possible role of the 68 000-Mr protein as an intracellular Ca2+ receptor in lymphocytes.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Celosia Lukman ◽  
Christopher Yonathan ◽  
Stella Magdalena ◽  
Diana Elizabeth Waturangi

Abstract Objective This study was conducted to isolate and characterize lytic bacteriophages for pathogenic Escherichia coli from chicken and beef offal, and analyze their capability as biocontrol for several foodborne pathogens. Methods done in this research are bacteriophage isolation, purification, titer determination, application, determination of host range and minimum multiplicity of infection (miMOI), and bacteriophage morphology. Results Six bacteriophages successfully isolated from chicken and beef offal using EPEC and EHEC as host strain. Bacteriophage titers observed between 109 and 1010 PFU mL−1. CS EPEC and BL EHEC bacteriophage showed high efficiency in reduction of EPEC or EHEC contamination in meat about 99.20% and 99.04%. The lowest miMOI was 0.01 showed by CS EPEC bacteriophage. CI EPEC and BL EPEC bacteriophage suspected as Myoviridae family based on its micrograph from Transmission Electron Microscopy (TEM). Refers to their activity, bacteriophages isolated in this study have a great potential to be used as biocontrol against several foodborne pathogens.


1988 ◽  
Vol 66 (5) ◽  
pp. 442-448 ◽  
Author(s):  
Rafael Picorel ◽  
Gabriel Gingras

We have developed a simple and efficient method, using a mixed detergent system of sodium dodecyl sulfate and Triton X-100, for the preparative isolation of theB875 complex from Rhodobacter sphaeroides 2.4.1. As a bonus, the method allows the preparation of both the B875 and B800-850 complexes from the same batch of chromatophores. The preparations are spectrally pure, as indicated by absorption and circular dichroism spectroscopy. The latter method suggests that the Qy band of the B875 complex is due to weakly interacting bacteriochlorophyll molecules. Protein and pigment analysis shows that the B875 complex contains 2 mol of bacteriochlorophyll and 2 mol of sphaeroidene per mol of apoprotein (12 266 g), whereas the B800-850 complex contains 3 mol of bacteriochlorophyll and 1 mol of sphaeroidene per mol of apoprotein (11 497 g). While these stoichiometries are in accord with currently accepted models, they disagree with their published experimental basis. Phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl glycerol, and diphosphatidyl glycerol were found to be present in the B875 complex.


1985 ◽  
Vol 7 (3-4) ◽  
pp. 365-373 ◽  
Author(s):  
Sanjay Kumar Mishra ◽  
N. K. Garg ◽  
A. M. Kidwai

2001 ◽  
Vol 7 (S2) ◽  
pp. 1030-1031
Author(s):  
J.M. Robinson

There are three members of the caveolin (CAV) gene family that give rise to four polypeptides. These polypeptides are CAV-1α, CAV-1β, CAV-2, and CAV-3. The CAV-1β isoform is a truncated form of CAV-1α that lacks 31 amino acids at the N-terminus of the molecule. The CAV- 1β molecule arises through an alternative splicing mechanism.Caveolae are specialized plasma membrane microdomains that are expressed at high levels in some cell types (e.g., endothelium, adipocytes, fibroblasts). These specialized regions of the plasma membrane have a characteristic omega-shaped appearance with diameters ranging from 40-90 run. They are distinct from clathrin-coated pits since they lack the characteristic coated appearance in electron microscopy. Caveolae were among the first structures to be discovered by biological electron microscopy. However, biochemical characterization of these structures did not begin in earnest until a marker protein was identified. The initial marker was the 22-kDa protein known as caveolin.


1988 ◽  
Vol 106 (3) ◽  
pp. 641-648 ◽  
Author(s):  
C L Holcomb ◽  
W J Hansen ◽  
T Etcheverry ◽  
R Schekman

Yeast cell surface growth is accomplished by constitutive secretion and plasma membrane assembly, culminating in the fusion of vesicles with the bud membrane. Coordination of secretion and membrane assembly has been investigated by examining the biogenesis of plasma membrane ATPase (PM ATPase) in secretion-defective (sec) strains of Saccharomyces cerevisiae. PM ATPase is synthesized as a approximately 106-kD polypeptide that is not detectably modified by asparagine-linked glycosylation or proteolysis during transit to the plasma membrane. Export of the PM ATPase requires the secretory pathway. In sec1, a mutant defective in the last step of secretion, large amounts of Golgi-derived vesicles are accumulated. Biochemical characterization of this organelle has demonstrated that PM ATPase and the secretory enzyme, acid phosphatase, are transported in a single vesicle species.


Sign in / Sign up

Export Citation Format

Share Document