scholarly journals Effect of membrane environment on the activity and inhibitability by malonyl-CoA of the carnitine acyltransferase of hepatic microsomal membranes

1997 ◽  
Vol 322 (2) ◽  
pp. 435-440 ◽  
Author(s):  
Neil M. BROADWAY ◽  
E. David SAGGERSON

We have investigated the extent to which membrane environment affects the catalytic properties of the malonyl-CoA-sensitive carnitine acyltransferase of liver microsomal membranes. Arrhenius-type plots of activity were linear in the absence and presence of malonyl-CoA (2.5 μM). Sensitivity to malonyl-CoA increased with decreasing assay temperature. Partly purified enzyme displayed an increased K0.5 (substrate concentration supporting half the maximal reaction rate) for myristoyl-CoA and a reduced sensitivity to malonyl-CoA compared with the enzyme in situ in membranes. Reconstitution with liposomes of a range of compositions restored the K0.5 for myristoyl-CoA to values similar to that seen in native membranes. The lipid requirements for restoration of sensitivity to malonyl-CoA were more stringent. When animals were starved for 24 h the specific activity of carnitine acyltransferase in microsomal membrane residues was increased 3.3-fold, whereas sensitivity to malonyl-CoA was decreased to 1/2.8. When enzymes partly purified from fed and starved animals were reconstituted into crude soybean phosphatidylcholine liposomes there was no difference in sensitivity to malonyl-CoA. When partly purified enzyme from fed rats was reconstituted into liposomes prepared from microsomal membrane lipids from fed animals it was 2.2-fold more sensitive to malonyl-CoA than when reconstituted with liposomes prepared from microsomal membrane lipids from starved animals. This suggests that the physiological changes in sensitivity to malonyl-CoA are mediated via changes in membrane lipid composition rather than via modification of the enzyme protein itself. The increased specific actvity of acyltransferase observed on starvation could not be attributed to changes in membrane lipid composition.

2004 ◽  
Vol 287 (3) ◽  
pp. R633-R641 ◽  
Author(s):  
B. J. Wu ◽  
A. J. Hulbert ◽  
L. H. Storlien ◽  
P. L. Else

The influence of membrane lipid composition on the molecular activity of a major membrane protein (the sodium pump) was examined as a test of the membrane pacemaker theory of metabolism. Microsomal membranes from the kidneys of cattle (Bos taurus) and crocodiles (Crocodylus porosus) were found to possess similar sodium pump concentrations, but cattle membranes showed a four- to fivefold higher enzyme (Na+-K+-ATPase) activity when measured at 37°C. The molecular activity of the sodium pumps (ATP/min) from both species was fully recoverable when delipidated pumps were reconstituted with membrane from the original source (same species). The results of experiments involving species membrane crossovers showed cattle sodium pump molecular activity to progressively decrease from 3,245 to 1,953 ( P < 0.005) to 1,031 ( P < 0.003) ATP/min when subjected to two cycles of delipidation and reconstitution with crocodile membrane as a lipid source. In contrast, the molecular activity of crocodile sodium pumps progressively increased from 729 to 908 ( P < 0.01) to 1,476 ( P = 0.01) ATP/min when subjected to two cycles of delipidation and reconstitution with cattle membrane as a lipid source. The lipid composition of the two membrane preparations showed similar levels of saturated (∼31–34%) and monounsaturated (∼23–25%) fatty acids. Cattle membrane had fourfold more n-3 polyunsaturated fatty acids (11.2 vs. 2.9%) but had a reduced n-6 polyunsaturate content (29 vs. 43%). The results support the membrane pacemaker theory of metabolism and suggest membrane lipids and their polyunsaturates play a significant role in determining the molecular activity of the sodium pump.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 919
Author(s):  
Manuel Torres ◽  
Sebastià Parets ◽  
Javier Fernández-Díaz ◽  
Roberto Beteta-Göbel ◽  
Raquel Rodríguez-Lorca ◽  
...  

Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).


2008 ◽  
Vol 74 (8) ◽  
pp. 2433-2440 ◽  
Author(s):  
Stefan Schouten ◽  
Ellen C. Hopmans ◽  
Marianne Baas ◽  
Henry Boumann ◽  
Sonja Standfest ◽  
...  

ABSTRACT In this study we analyzed the membrane lipid composition of “Candidatus Nitrosopumilus maritimus,” the only cultivated representative of the cosmopolitan group I crenarchaeota and the only mesophilic isolate of the phylum Crenarchaeota. The core lipids of “Ca. Nitrosopumilus maritimus” consisted of glycerol dialkyl glycerol tetraethers (GDGTs) with zero to four cyclopentyl moieties. Crenarchaeol, a unique GDGT containing a cyclohexyl moiety in addition to four cyclopentyl moieties, was the most abundant GDGT. This confirms unambiguously that crenarchaeol is synthesized by species belonging to the group I.1a crenarchaeota. Intact polar lipid analysis revealed that the GDGTs have hexose, dihexose, and/or phosphohexose head groups. Similar polar lipids were previously found in deeply buried sediments from the Peru margin, suggesting that they were in part synthesized by group I crenarchaeota.


2003 ◽  
Vol 77 (23) ◽  
pp. 12819-12828 ◽  
Author(s):  
Wai-Ming Lee ◽  
Paul Ahlquist

ABSTRACT Multifunctional RNA replication protein 1a of brome mosaic virus (BMV), a positive-strand RNA virus, localizes to the cytoplasmic face of endoplasmic reticulum (ER) membranes and induces ER lumenal spherules in which viral RNA synthesis occurs. We previously showed that BMV RNA replication in yeast is severely inhibited prior to negative-strand RNA synthesis by a single-amino-acid substitution in the ole1w allele of yeast Δ9 fatty acid (FA) desaturase, which converts saturated FAs (SFAs) to unsaturated FAs (UFAs). Here we further define the relationships between 1a, membrane lipid composition, and RNA synthesis. We show that 1a expression increases total membrane lipids in wild-type (wt) yeast by 25 to 33%, consistent with recent results indicating that the numerous 1a-induced spherules are enveloped by invaginations of the outer ER membrane. 1a did not alter total membrane lipid composition in wt or ole1w yeast, but the ole1w mutation selectively depleted 18-carbon, monounsaturated (18:1) FA chains and increased 16:0 SFA chains, reducing the UFA-to-SFA ratio from ∼2.5 to ∼1.5. Thus, ole1w inhibition of RNA replication was correlated with decreased levels of UFA, membrane fluidity, and plasticity. The ole1w mutation did not alter 1a-induced membrane synthesis, 1a localization to the perinuclear ER, or colocalization of BMV 2a polymerase, nor did it block spherule formation. Moreover, BMV RNA replication templates were still recovered from cell lysates in a 1a-induced, 1a- and membrane-associated, and nuclease-resistant but detergent-susceptible state consistent with spherules. However, unlike nearby ER membranes, the membranes surrounding spherules in ole1w cells were not distinctively stained with osmium tetroxide, which interacts specifically with UFA double bonds. Thus, in ole1w cells, spherule-associated membranes were locally depleted in UFAs. This localized UFA depletion helps to explain why BMV RNA replication is more sensitive than cell growth to reduced UFA levels. The results imply that 1a preferentially interacts with one or more types of membrane lipids.


2003 ◽  
Vol 69 (9) ◽  
pp. 5115-5119 ◽  
Author(s):  
Hyun-Gyun Yuk ◽  
Douglas L. Marshall

ABSTRACT The influence of heat adaptation (growth at 42 and 45°C) on changes in membrane lipid composition and verotoxin concentration of Escherichia coli O157:H7 (ATCC 43895), an rpoS mutant of ATCC 43895 (FRIK 816-3), a verotoxin mutant E. coli O157:H7 (B6-914), and nonpathogenic E. coli (ATCC 25922) was investigated. D values (57°C) of heat-adapted cells were up to 3.9 min longer than those of control cells for all four strains. Heat adaptation increased the amounts of palmitic acid (16:0) and cis-vaccenic acid (18:1ω7c) in membrane lipids of ATCC 43895 and the rpoS mutant, whereas there was a reduction and no change in the amount of cis-vaccenic acid in nonpathogenic and verotoxin mutant E. coli, respectively. The ratio of palmitic to cis-vaccenic acids decreased in ATCC 43895 and in the rpoS mutant, whereas the ratio increased in nonpathogenic E. coli and was not different in the verotoxin mutant with elevated growth temperature. Total verotoxin concentration decreased due to a reduction in intracellular verotoxin amount in heat-adapted ATCC 43895 and rpoS mutant strains. However, extracellular verotoxin concentration increased in heat-adapted cells. The rpoS gene did not influence membrane lipid composition changes although it did affect heat resistance. Results suggest that increased membrane fluidity may have caused increased verotoxin secretion.


1991 ◽  
Vol 116 (3) ◽  
pp. 528-533 ◽  
Author(s):  
Bruce D. Whitaker

Plastids and microsomal membranes were isolated from pericarp tissue of mature-green and red-ripe bell pepper (Capsicum annuum L.) fruit harvested from greenhouse- and field-grown plants. The lipid composition of these membrane fractions changed much more with ripening of field-grown than greenhouse-grown fruit. Also, the phospholipid (PL), free sterol (FS), steryl glycoside (SG), and acylated steryl glycoside (ASG) content of microsomes and plastids from green and red fruit were very different under the two growing conditions. Total steryl lipids (TSL = FS + SG + ASG) and the TSL: PL ratio increased in microsomes and decreased in plastids with ripening. These changes were much greater in field-grown fruit. The ASG: SG ratio decreased with ripening in both membrane fractions under both growing conditions. Ripening and growth conditions affected the phospholipid and sterol composition in plastids much more than in microsomes. Lipid changes associated with the chloroplast to chromoplast transformation were similar in field- and greenhouse-grown fruit, including an increase in the galactolipid: PL ratio.


2017 ◽  
Vol 71 ◽  
pp. 1239-1250
Author(s):  
Anna Walczewska ◽  
Barbara Dziedzic ◽  
Dawid Stulczewski ◽  
Emilia Zgórzyńska

Membrane lipids, due to diverse molecular structures, electric charge and different functional characteristic, have a profound role in multiple cytophysiological processes. A better understanding of the membrane structure and changes of its function in a wide range of diseases gave rise to a new approach termed membrane lipid therapy and directed to modifying the membranes. The strategies directed to membrane involve a direct regulation of membrane lipid composition that causes a change of the transmembrane protein function and modifies the organization of membrane microdomains, or regulation of enzyme activity and gene expression to alter membrane lipid composition. Membrane therapy assumes the use of new molecules specifically designed to modify lipid composition and function of abnormal signaling proteins. Therefore, modifications of the lipid composition and organization of membrane microdomains become pharmacological targets to reverse pathological changes in the profile of enzymatically and non-enzymatically generated lipid derivatives or to modify signaling pathways in the cell. The present monography is an update of the canonical membrane model by Singer-Nicolson and describes the therapeutic targets related to the regulation of the composition and organization of the lipids in the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document