scholarly journals Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque

1998 ◽  
Vol 333 (3) ◽  
pp. 519-525 ◽  
Author(s):  
Shanlin FU ◽  
Michael J. DAVIES ◽  
Roland STOCKER ◽  
Roger T. DEAN

Oxidative damage might be important in atherogenesis. Oxidized lipids are present at significant concentrations in advanced human plaque, although tissue antioxidants are mostly present at normal concentrations. Indirect evidence of protein modification (notably derivatization of lysine) or oxidation has been obtained by immunochemical methods; the specificities of these antibodies are unclear. Here we present chemical determinations of six protein-bound oxidation products: dopa, o-tyrosine, m-tyrosine, dityrosine, hydroxyleucine and hydroxyvaline, some of which reflect particularly oxy-radical-mediated reaction pathways, which seem to involve mainly the participation of transition- metal ions. We compared the relative abundance of these oxidation products in normal intima, and in human carotid plaque samples with that observed after radiolytically generated hydroxyl radical attack on BSA in vitro. The close similarities in relative abundances in the latter two circumstances indicate that hydroxyl radical damage might occur in plaque. The relatively higher level of dityrosine in plaque than that observed after radiolysis suggests the additional involvement of HOCl-mediated reactions in advanced plaque.

1997 ◽  
Vol 324 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Shan-Lin FU ◽  
Roger T. DEAN

We have previously reported the formation of valine hydroperoxides and aldehydes from hydroxyl-radical attack on free valine and protein molecules. We have also demonstrated that the major degradation products of valine hydroperoxides by several biochemical and cellular systems are the corresponding hydroxides, and therefore proposed that hydroxyvalines may serve as useful in vivo markers for studying protein oxidation. Here we have undertaken the structural elucidation of the oxidation products of leucine, another amino acid which is very susceptible to peroxidation. Hydroxyl-radical (HO•) attack on l-leucine in the presence of oxygen, followed by NaBH4 reduction, gave rise to five major oxidation products which have been isolated and identified. On the basis of chemical and spectroscopic evidence, the five products have been identified as (2S)-γ-hydroxyleucine, (2S,4S)-δ-hydroxyleucine, (2S,4R)-δ-hydroxyleucine, (2S,4R)-4-methylproline (trans-4-methyl-l-proline) and (2S,4S)-4-methylproline (cis-4-methyl-l-proline). The three hydroxyleucines have been confirmed to be the reduction products of the corresponding hydroperoxyleucines, while the two proline analogues are from reduction of their corresponding cyclic Schiff bases. By HPLC analysis using post-column o-phthaldialdehyde derivatization, we have detected hydroxyleucines in the hydrolysates of tripeptides and proteins which had been γ-radiolysed and treated with NaBH4. Furthermore, we demonstrate the occurrence of the hydroxyleucines on proteins in physiological and pathological samples. Hydroxyleucines, like hydroxyvalines, may provide usefulin vivo markers for studying protein oxidation. In the present study we also investigated the competition between leucine, valine and phenylalanine for HO•, and proposed a possible radical-transfer process in such free-radical reactions.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1687-1692 ◽  
Author(s):  
F Grimminger ◽  
M Menger ◽  
G Becker ◽  
W Seeger

Abstract Granulocyte (polymorphonuclear leukocyte, PMN) sequestration in the microvascular bed with release of different mediators has been implicated in the pathogenesis of inflammatory and allergic disorders in many organs including the lung. In the present study, we investigated the profile and quantity of leukotriene (LT) generation in isolated blood-free perfused rabbit lungs, in isolated PMNs in vitro and in rabbit lungs, following administration of PMNs, mimicking pulmonary leukostasis. Following stimulation with increasing concentrations of the calcium ionophore A 23137 (0.1 to 2 mumol/L), LTs were detected in the buffer fluid by their chromatographic mobility in different high-performance liquid chromatography (HPLC) systems, by on- line peak spectrum analysis, and by post-HPLC radioimmunoassay (RIA). In isolated lungs, a dose-dependent generation of cysteinyl LTs greater than LTB4, in the complete absence of omega-oxidation products of LTB4 as well as nonenzymatic hydrolysis products of LTA4, was evoked. PMNs in vitro showed a typical profile of LT liberation (LTB4, 20-OH-, and COOH-LTB4, nonenzymatic LTA4 metabolites). In the model of pulmonary leukostasis, the presence of omega-oxidation products of LTB4 indicated metabolic integrity of the trapped PMNs. Nonenzymatic hydrolysis products of LTA4 were, however, not detected in the combined system, whereas the cysteinyl LTs increased markedly. This profile suggests intercellular transfer of PMN-derived LTA4 to lung cells in the microenvironment. In addition, at 2 mumol/L A23187, the sum of all LTA4- derived products surpassed the arithmetic sum of the isolated preparations more than threefold. This potentiation of an LT generation under conditions of pulmonary leukostasis may be of biologic significance for amplification of inflammatory events.


Blood ◽  
1988 ◽  
Vol 72 (5) ◽  
pp. 1687-1692
Author(s):  
F Grimminger ◽  
M Menger ◽  
G Becker ◽  
W Seeger

Granulocyte (polymorphonuclear leukocyte, PMN) sequestration in the microvascular bed with release of different mediators has been implicated in the pathogenesis of inflammatory and allergic disorders in many organs including the lung. In the present study, we investigated the profile and quantity of leukotriene (LT) generation in isolated blood-free perfused rabbit lungs, in isolated PMNs in vitro and in rabbit lungs, following administration of PMNs, mimicking pulmonary leukostasis. Following stimulation with increasing concentrations of the calcium ionophore A 23137 (0.1 to 2 mumol/L), LTs were detected in the buffer fluid by their chromatographic mobility in different high-performance liquid chromatography (HPLC) systems, by on- line peak spectrum analysis, and by post-HPLC radioimmunoassay (RIA). In isolated lungs, a dose-dependent generation of cysteinyl LTs greater than LTB4, in the complete absence of omega-oxidation products of LTB4 as well as nonenzymatic hydrolysis products of LTA4, was evoked. PMNs in vitro showed a typical profile of LT liberation (LTB4, 20-OH-, and COOH-LTB4, nonenzymatic LTA4 metabolites). In the model of pulmonary leukostasis, the presence of omega-oxidation products of LTB4 indicated metabolic integrity of the trapped PMNs. Nonenzymatic hydrolysis products of LTA4 were, however, not detected in the combined system, whereas the cysteinyl LTs increased markedly. This profile suggests intercellular transfer of PMN-derived LTA4 to lung cells in the microenvironment. In addition, at 2 mumol/L A23187, the sum of all LTA4- derived products surpassed the arithmetic sum of the isolated preparations more than threefold. This potentiation of an LT generation under conditions of pulmonary leukostasis may be of biologic significance for amplification of inflammatory events.


Author(s):  
Mohammed Al-Amery1 ◽  
Ashraf Saad Rasheed ◽  
Dina A. Najeeb

Five new mixed ligand metal complexes have been synthesized by the reaction of divalent transition metal ions (Hg, Ni, Zn, Cu and Cd) with 2-(naphthalen-l-ylamino)-2-phenylacetonitrile (L1 ) and 1,10-phenanthroline (L2). The coordination likelihood of the two ligands toward metal ions has been suggested in the light of elemental analysis, UV-Vis spectra, FTIR, 1H-NMR, flam atomic absorption, molar conductance and magnetic studies. Results data suggest that the octahedral geometry for all the prepared complexes. Antibacterial examination of synthesized complexes in vitro was performed against four bacterias. Firstly, Gram-negative bacteria namely, Pseudomonas aerugin and Escherichia. Secondly, Gram-positive bacteria namely, Bacillus subtilis, Staphylococcuaurouss. Results data exhibit that the synthesized complexes exhibited more biological activity than tetracycline pharmaceutical.


2018 ◽  
Vol 69 (7) ◽  
pp. 1678-1681
Author(s):  
Amina Mumtaz ◽  
Tariq Mahmud ◽  
M. R. J. Elsegood ◽  
G. W. Weaver

New series of copper (II), cobalt (II), zinc (II), nickel (II), manganese (II), iron (II) complexes of a novel Schiff base were prepared by the condensation of sulphadizine and pyridoxal hydrochloride. The ligand and metal complexes were characterized by utilizing different instrumental procedures like microanalysis, thermogravimetric examination and spectroscopy. The integrated ligand and transition metal complexes were screened against various bacteria and fungus. The studies demonstrated the enhanced activity of metal complexes against reported microbes when compared with free ligand.


2021 ◽  
Vol 22 (14) ◽  
pp. 7497
Author(s):  
Elena Chugunova ◽  
Gabriele Micheletti ◽  
Dario Telese ◽  
Carla Boga ◽  
Daut Islamov ◽  
...  

A series of novel hybrid compounds containing benzofuroxan and 2-aminothiazole moieties are synthesized via aromatic nucleophilic substitution reaction. Possible reaction pathways have been considered quantum-chemically, which allowed us to suggest the most probable products. The quantum chemical results have been proved by X-ray data on one compound belonging to the synthesized series. It was shown that the introduction of substituents to both the thiazole and amine moieties of the compounds under study strongly influences their UV/Vis spectra. Initial substances and obtained hybrid compounds have been tested in vitro as anticancer agents. Target compounds showed selectivity towards M-HeLa tumor cell lines and were found to be more active than starting benzofuroxan and aminothiazoles. Furthermore, they are considerably less toxic to normal liver cells compared to Тamoxifen. The mechanism of action of the studied compounds can be associated with the induction of apoptosis, which proceeds along the mitochondrial pathway. Thus, new hybrids of benzofuroxan are promising candidates for further development as anticancer agents.


1999 ◽  
Vol 343 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Ajoy BASAK ◽  
Bakary B. TOURÉ ◽  
Claude LAZURE ◽  
Majambu MBIKAY ◽  
Michel CHRÉTIEN ◽  
...  

Proprotein convertase PC4A, a member of the subtilisin/kexin family of serine proteases, was obtained in enzymically active form following expression of vaccinia virus recombinant rat (r)PC4A in GH4C1 cells. It displayed maximal activity at pH 7.0 and a Ca2+ concentration of 2.0 mM. Using PC4-specific antibodies, Western blot analysis of the medium revealed a major band at ≈ 54 kDa, corresponding to the molecular size of mature rPC4A. Among the various peptidyl-[4-methylcoumarin 7-amide (MCA)] substrates tested, the one that was preferred the most by rPC4A was acetyl (Ac)-Arg-Lys-Lys-Arg-MCA, which is cleaved 9 times faster (as judged from Vmax/Km measurements) than the best furin and PC1 substrate, pGlu-Arg-Thr-Lys-Arg-MCA. Recombinant rPC4A, along with human (h)furin and hPC1, cleaved a 17-amino-acid synthetic peptide, YQTLRRRVKR↓ SLVVPTD (where ↓ denotes site of cleavage, and the important basic residues are shown in bold), encompassing the junction between the putative pro-segment of rPC4A and the active enzyme, suggesting a possible auto-activation of the enzyme. In an effort to identify potential physiological substrates for PC4, studies were performed with pro-[insulin-growth-factor (IGF)]-derived synthetic peptides, namely Ac-PAKSAR↓ SVRA (IGF-I66-75) and Ac-PAKSER↓ DVST (IGF-II63-72), as well as two lysine mutants [(IGF-I66-75Lys70) and (IGF-II63-72Lys67)]. Unlike PC1 and furin, rPC4A cleaved efficiently both IGF-I66-75 and IGF-II63-72, suggesting a possible role of PC4 in the maturation of IGF-I and -II. In contrast, the peptides with a position 2 (P2) lysine mutation, IGF-I66-75Lys70 and IGF-II63-72Lys67, were cleaved more efficiently by PC1 and furin compared with rPC4A. Furthermore, using synthetic peptides containing the processing sites of pituitary adenylate-cyclase-activating polypeptide (PACAP)-38, we were able to confirm that, of the two testicular enzymes PC4 and PC7, PC4 is the best candidate enzyme for maturation of PACAP. Our data suggest that rPC4A is a functionally active convertase, with a substrate specificity somewhat different from that of other convertases, namely KXXR↓ (where X denotes any other residue). As expected, p-chloromercuribenzoic acid and metal chelators such as EDTA, EGTA and trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid inhibit the proteolytic activity of rPC4A, whereas it is activated by dithiothreitol. PC4A was also inhibited by transition-metal ions (Cu2+>Hg2+>Zn2+ Ni2+>Co2+), as well as by small peptide semicarbazones (SCs), such as Arg-Lys-Lys-Arg-SC (Ki 0.75 μM) and Arg-Ser-Lys-Arg-SC (Ki 11.4 μM).


1993 ◽  
Vol 38 (3) ◽  
pp. 273-287 ◽  
Author(s):  
C. Coudray ◽  
S. Rachidi ◽  
A. Favier

FEBS Letters ◽  
1982 ◽  
Vol 137 (2) ◽  
pp. 327-330 ◽  
Author(s):  
John M.C. Gutteridge ◽  
Stephanie Wilkins

Sign in / Sign up

Export Citation Format

Share Document