scholarly journals Enzymic characterization in vitro of recombinant proprotein convertase PC4

1999 ◽  
Vol 343 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Ajoy BASAK ◽  
Bakary B. TOURÉ ◽  
Claude LAZURE ◽  
Majambu MBIKAY ◽  
Michel CHRÉTIEN ◽  
...  

Proprotein convertase PC4A, a member of the subtilisin/kexin family of serine proteases, was obtained in enzymically active form following expression of vaccinia virus recombinant rat (r)PC4A in GH4C1 cells. It displayed maximal activity at pH 7.0 and a Ca2+ concentration of 2.0 mM. Using PC4-specific antibodies, Western blot analysis of the medium revealed a major band at ≈ 54 kDa, corresponding to the molecular size of mature rPC4A. Among the various peptidyl-[4-methylcoumarin 7-amide (MCA)] substrates tested, the one that was preferred the most by rPC4A was acetyl (Ac)-Arg-Lys-Lys-Arg-MCA, which is cleaved 9 times faster (as judged from Vmax/Km measurements) than the best furin and PC1 substrate, pGlu-Arg-Thr-Lys-Arg-MCA. Recombinant rPC4A, along with human (h)furin and hPC1, cleaved a 17-amino-acid synthetic peptide, YQTLRRRVKR↓ SLVVPTD (where ↓ denotes site of cleavage, and the important basic residues are shown in bold), encompassing the junction between the putative pro-segment of rPC4A and the active enzyme, suggesting a possible auto-activation of the enzyme. In an effort to identify potential physiological substrates for PC4, studies were performed with pro-[insulin-growth-factor (IGF)]-derived synthetic peptides, namely Ac-PAKSAR↓ SVRA (IGF-I66-75) and Ac-PAKSER↓ DVST (IGF-II63-72), as well as two lysine mutants [(IGF-I66-75Lys70) and (IGF-II63-72Lys67)]. Unlike PC1 and furin, rPC4A cleaved efficiently both IGF-I66-75 and IGF-II63-72, suggesting a possible role of PC4 in the maturation of IGF-I and -II. In contrast, the peptides with a position 2 (P2) lysine mutation, IGF-I66-75Lys70 and IGF-II63-72Lys67, were cleaved more efficiently by PC1 and furin compared with rPC4A. Furthermore, using synthetic peptides containing the processing sites of pituitary adenylate-cyclase-activating polypeptide (PACAP)-38, we were able to confirm that, of the two testicular enzymes PC4 and PC7, PC4 is the best candidate enzyme for maturation of PACAP. Our data suggest that rPC4A is a functionally active convertase, with a substrate specificity somewhat different from that of other convertases, namely KXXR↓ (where X denotes any other residue). As expected, p-chloromercuribenzoic acid and metal chelators such as EDTA, EGTA and trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid inhibit the proteolytic activity of rPC4A, whereas it is activated by dithiothreitol. PC4A was also inhibited by transition-metal ions (Cu2+>Hg2+>Zn2+ Ni2+>Co2+), as well as by small peptide semicarbazones (SCs), such as Arg-Lys-Lys-Arg-SC (Ki 0.75 μM) and Arg-Ser-Lys-Arg-SC (Ki 11.4 μM).

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1067-1067
Author(s):  
Jon A Kenniston ◽  
Daniel J Sexton ◽  
Diana Martik ◽  
Ryan R Faucette ◽  
Malini Viswanathan ◽  
...  

Abstract The plasma-kallikrein kinin (contact) system contributes to the physiological and pathophysiological reactions of vascular biology. Activation of this pathway causes the release of the potent nonapeptide vasodilator bradykinin following proteolytic cleavage of high-molecular weight kininogen (HMWK) by the serine protease plasma kallikrein (pKal). Normal vascular homeostasis requires regulation of pKal activity by interactions with the C1-inhibitor (C1-INH). This is most apparent in individuals with hereditary angioedema (HAE), a disease characterized by a genetic deficiency in C1-INH that results in persistent pKal activity and consequent bradykinin release. These events can ultimately manifest as unpredictable and potentially fatal attacks of subcutaneous and mucosal edema. Inhibition of pKal proteolytic activity has proven to be a viable therapeutic option for HAE, however there remains an unmet medical need for a long-lasting prophylactic treatment for this disease. Given the potential for target specificity and long serum half-life with antibody therapeutics, we used phage display to select a fully human antibody inhibitor (DX-2930) specific for pKal. In vitro enzyme inhibition and affinity assays demonstrate that DX-2930 is a potent antibody inhibitor of pKal (Ki = 125 pM) that binds the active form of pKal, but not the proenzyme form (prekallikrein) or any other serine protease tested. DX-2930 binding consequently prohibits pKal from cleaving bradykinin out of HMWK and thereby prevents the activation of the bradykinin receptor B2. A 2.1Å resolution X-ray crystallographic structure of pKal complexed to a DX-2930 Fab construct supports these findings, demonstrating that the pKal proteolytic active site is intimately bound - and thereby occluded - by the Fab. This structural analysis provides both a rationale for the potency and specificity of DX-2930, and demonstrates the utility of using antibodies to specifically target an antigen among a family of related proteins (e.g. serine proteases). To further address the functional activity of DX-2930, we demonstrate that subcutaneous dosing of DX-2930 effectively reduces carrageenan-induced paw edema in vivo in rats when injected 24 hours prior to challenge. Combined with our finding that DX-2930 has a prolonged serum residence time in cynomolgus monkeys (t1/2 = 301 hours, SC), the data presented here demonstrates the potential of DX-2930 for the prophylactic inhibition of pKal-mediated diseases, such as HAE. Disclosures: Kenniston: Dyax Corp: Employment. Sexton:Dyax Corp: Employment. Martik:Dyax Corp: Employment, former employee of Dyax Corp Other. Faucette:Dyax Corp: Employment. Viswanathan:Dyax Corp: Employment. Kastrapeli:Dyax: Employment. Kopacz:Dyax Corp: Employment. Conley:Dyax Corp: Employment. Lindberg:Dyax Corp: Employment. Cosic:Dyax Corp: Employment. Comeau:Dyax Corp: Employment. Mason:Dyax Corp: Employment. DiLeo:Dyax Corp: Employment. Chen:Dyax Corp: Employment. Ladner:Dyax Corp: Employment. Edwards:Emerald Biostructures: Employment. TenHoor:Dyax Corp: Employment. Nixon:Dyax Corp: Employment. Adelman:Dyax Corp: Employment.


1968 ◽  
Vol 46 (5) ◽  
pp. 423-432 ◽  
Author(s):  
M. Yamamoto

Glycogen phosphorylase b was purified 70- to 90-fold from skeletal muscle of rainbow trout (Salmo gairdneri). The purified enzyme exhibited maximal activity near pH 6.8 at 37°. Of several 5′-nucleotides tested, only 5′-AMP caused stimulation of phosphorylase b. The Km value for glucose-1-phosphate was 10–15 mM, and for 5′-AMP, 0.2–0.4 mM. Glucose (25 mM) and ATP (5 mM) were both inhibitory, but glucose-6-phosphate (5 mM) had no effect. Inactive trout muscle phosphorylase was converted to the active form in vivo by subjecting a fish to physical exercise. The conversion of fish muscle phosphorylase b to a was also catalyzed in vitro with purified rabbit muscle phosphorylase b kinase in the presence of ATP and Mg++. Evidence is presented to indicate the presence of phosphorylase b kinase and phosphorylase phosphatase in trout skeletal muscle.


Author(s):  
Mohammed Al-Amery1 ◽  
Ashraf Saad Rasheed ◽  
Dina A. Najeeb

Five new mixed ligand metal complexes have been synthesized by the reaction of divalent transition metal ions (Hg, Ni, Zn, Cu and Cd) with 2-(naphthalen-l-ylamino)-2-phenylacetonitrile (L1 ) and 1,10-phenanthroline (L2). The coordination likelihood of the two ligands toward metal ions has been suggested in the light of elemental analysis, UV-Vis spectra, FTIR, 1H-NMR, flam atomic absorption, molar conductance and magnetic studies. Results data suggest that the octahedral geometry for all the prepared complexes. Antibacterial examination of synthesized complexes in vitro was performed against four bacterias. Firstly, Gram-negative bacteria namely, Pseudomonas aerugin and Escherichia. Secondly, Gram-positive bacteria namely, Bacillus subtilis, Staphylococcuaurouss. Results data exhibit that the synthesized complexes exhibited more biological activity than tetracycline pharmaceutical.


2018 ◽  
Vol 69 (7) ◽  
pp. 1678-1681
Author(s):  
Amina Mumtaz ◽  
Tariq Mahmud ◽  
M. R. J. Elsegood ◽  
G. W. Weaver

New series of copper (II), cobalt (II), zinc (II), nickel (II), manganese (II), iron (II) complexes of a novel Schiff base were prepared by the condensation of sulphadizine and pyridoxal hydrochloride. The ligand and metal complexes were characterized by utilizing different instrumental procedures like microanalysis, thermogravimetric examination and spectroscopy. The integrated ligand and transition metal complexes were screened against various bacteria and fungus. The studies demonstrated the enhanced activity of metal complexes against reported microbes when compared with free ligand.


2018 ◽  
Vol 24 (11) ◽  
Author(s):  
Adriana M. Patarroyo-Vargas ◽  
Yaremis B. Merino-Cabrera ◽  
Jose C. Zanuncio ◽  
Francelina Rocha ◽  
Wellington G. Campos ◽  
...  

2019 ◽  
Vol 19 (22) ◽  
pp. 1952-1961 ◽  
Author(s):  
J.C. Sobrinho ◽  
A.F. Francisco ◽  
R. Simões-Silva ◽  
A.M. Kayano ◽  
J.J. Alfonso Ruiz Diaz ◽  
...  

Background: Several studies have aimed to identify molecules that inhibit the toxic actions of snake venom phospholipases A2 (PLA2s). Studies carried out with PLA2 inhibitors (PLIs) have been shown to be efficient in this assignment. Objective: This work aimed to analyze the interaction of peptides derived from Bothrops atrox PLIγ (atPLIγ) with a PLA2 and to evaluate the ability of these peptides to reduce phospholipase and myotoxic activities. Methods: Peptides were subjected to molecular docking with a homologous Lys49 PLA2 from B. atrox venom modeled by homology. Phospholipase activity neutralization assay was performed with BthTX-II and different ratios of the peptides. A catalytically active and an inactive PLA2 were purified from the B. atrox venom and used together in the in vitro myotoxic activity neutralization experiments with the peptides. Results: The peptides interacted with amino acids near the PLA2 hydrophobic channel and the loop that would be bound to calcium in Asp49 PLA2. They were able to reduce phospholipase activity and peptides DFCHNV and ATHEE reached the highest reduction levels, being these two peptides the best that also interacted in the in silico experiments. The peptides reduced the myotubes cell damage with a highlight for the DFCHNV peptide, which reduced by about 65%. It has been suggested that myotoxic activity reduction is related to the sites occupied in the PLA2 structure, which could corroborate the results observed in molecular docking. Conclusion: This study should contribute to the investigation of the potential of PLIs to inhibit the toxic effects of PLA2s.


2006 ◽  
Vol 26 (3) ◽  
pp. 965-975 ◽  
Author(s):  
Tom S. Kim ◽  
Cynthia Heinlein ◽  
Robert C. Hackman ◽  
Peter S. Nelson

ABSTRACT Tmprss2 encodes an androgen-regulated type II transmembrane serine protease (TTSP) expressed highly in normal prostate epithelium and has been implicated in prostate carcinogenesis. Although in vitro studies suggest protease-activated receptor 2 may be a substrate for TMPRSS2, the in vivo biological activities of TMPRSS2 remain unknown. We generated Tmprss2 −/− mice by disrupting the serine protease domain through homologous recombination. Compared to wild-type littermates, Tmprss2 −/− mice developed normally, survived to adulthood with no differences in protein levels of prostatic secretions, and exhibited no discernible abnormalities in organ histology or function. Loss of TMPRSS2 serine protease activity did not influence fertility, reduce survival, result in prostate hyperplasia or carcinoma, or alter prostatic luminal epithelial cell regrowth following castration and androgen replacement. Lack of an observable phenotype in Tmprss2 −/− mice was not due to transcriptional compensation by closely related Tmprss2 homologs. We conclude that the lack of a discernible phenotype in Tmprss2 −/− mice suggests functional redundancy involving one or more of the type II transmembrane serine protease family members or other serine proteases. Alternatively, TMPRSS2 may contribute a specialized but nonvital function that is apparent only in the context of stress, disease, or other systemic perturbation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sonya Middleton ◽  
Sabine Steinbach ◽  
Michael Coad ◽  
Kevina McGill ◽  
Colm Brady ◽  
...  

AbstractTuberculin Purified Protein Derivatives (PPDs) exhibit multiple limitations: they are crude extracts from mycobacterial cultures with largely unknown active components; their production depends on culture of mycobacteria requiring expensive BCL3 production facilities; and their potency depends on the technically demanding guinea pig assay. To overcome these limitations, we developed a molecularly defined tuberculin (MDT) by adding further antigens to our prototype reagent composed of ESAT-6, CFP-10 and Rv3615c (DIVA skin test, DST). In vitro screening using PBMC from infected and uninfected cattle shortlisted four antigens from a literature-based list of 18 to formulate the MDT. These four antigens plus the previously identified Rv3020c protein, produced as recombinant proteins or overlapping synthetic peptides, were formulated together with the three DST antigens into the MDT to test cattle experimentally and naturally infected with M. bovis, uninfected cattle and MAP vaccinated calves. We demonstrated significant increases in MDT-induced skin responses compared to DST in infected animals, whilst maintaining high specificity in unvaccinated or MAP vaccinated calves. Further, MDT can also be applied in in vitro blood-based interferon-gamma release assays. Thus, MDT promises to be a robust diagnostic skin and blood test reagent overcoming some of the limitations of PPDs and warrants full validation.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yingwei Chen ◽  
Eric A. Toth ◽  
Biao Ruan ◽  
Eun Jung Choi ◽  
Richard Simmerman ◽  
...  

AbstractWe describe the design, kinetic properties, and structures of engineered subtilisin proteases that degrade the active form of RAS by cleaving a conserved sequence in switch 2. RAS is a signaling protein that, when mutated, drives a third of human cancers. To generate high specificity for the RAS target sequence, the active site was modified to be dependent on a cofactor (imidazole or nitrite) and protease sub-sites were engineered to create a linkage between substrate and cofactor binding. Selective proteolysis of active RAS arises from a 2-step process wherein sub-site interactions promote productive binding of the cofactor, enabling cleavage. Proteases engineered in this way specifically cleave active RAS in vitro, deplete the level of RAS in a bacterial reporter system, and also degrade RAS in human cell culture. Although these proteases target active RAS, the underlying design principles are fundamental and will be adaptable to many target proteins.


2000 ◽  
Vol 182 (9) ◽  
pp. 2604-2610 ◽  
Author(s):  
Gillian Newman ◽  
Elliott Crooke

ABSTRACT Given the lack of a nucleus in prokaryotic cells, the significance of spatial organization in bacterial chromosome replication is only beginning to be fully appreciated. DnaA protein, the initiator of chromosomal replication in Escherichia coli, is purified as a soluble protein, and in vitro it efficiently initiates replication of minichromosomes in membrane-free DNA synthesis reactions. However, its conversion from a replicatively inactive to an active form in vitro occurs through its association with acidic phospholipids in a lipid bilayer. To determine whether the in situ residence of DnaA protein is cytoplasmic, membrane associated, or both, we examined the cellular location of DnaA using immunogold cryothin-section electron microscopy and immunofluorescence. Both of these methods revealed that DnaA is localized at the cell membrane, further suggesting that initiation of chromosomal replication in E. coli is a membrane-affiliated event.


Sign in / Sign up

Export Citation Format

Share Document